From 405c99b39d4ea5de52af298617ed87fca9e696d4 Mon Sep 17 00:00:00 2001 From: YingboMa Date: Sat, 26 Aug 2017 21:25:37 -0400 Subject: [PATCH] Add BVProblem example --- PhysicalModels/BVProblem.ipynb | 574 +++++++++++++++++++++++++++++++++ 1 file changed, 574 insertions(+) create mode 100644 PhysicalModels/BVProblem.ipynb diff --git a/PhysicalModels/BVProblem.ipynb b/PhysicalModels/BVProblem.ipynb new file mode 100644 index 00000000..3c896e3c --- /dev/null +++ b/PhysicalModels/BVProblem.ipynb @@ -0,0 +1,574 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Boundary Value Problem\n", + "\n", + "---\n", + "\n", + "In the [Classical Physics Models](http://nbviewer.jupyter.org/github/JuliaDiffEq/DiffEqTutorials.jl/blob/master/PhysicalModels/ClassicalPhysics.ipynb) tutorial there is a simple pendulum example. We solved it as an initial value problem a.k.a. IVP, i.e. I know the initial position and velocity, and tell me what will happen. In this notebook, we will solve the pendulum problem when we know the conditions different time. This kind of problem is known as boundary value problem a.k.a. BVP." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Plots.GRBackend()" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using Plots, BoundaryValueDiffEq, OrdinaryDiffEq; gr()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Everything in this code block will be the same as the IVP one." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "simplependulum (generic function with 1 method)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Constants\n", + "const g = 9.81\n", + "L = 1.0\n", + "\n", + "#Initial guess\n", + "u₀ = [0,π/2]\n", + "tspan = (0.0,pi/2)\n", + "\n", + "#Define the problem\n", + "function simplependulum(t,u,du)\n", + " θ = u[1]\n", + " dθ = u[2]\n", + " du[1] = dθ\n", + " du[2] = -(g/L)*sin(θ)\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is where the `Boundary` comes in. We need to write a function that calculate the residual in-place from the problem solution, such that the residual is $\\vec{0}$ when the boundary condition is satisfied." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.5\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "-2.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "2.5\n", + "\n", + "\n", + "t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "u1(t)\n", + "\n", + "\n", + "\n", + "u2(t)\n", + "\n", + "\n" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function bc1(residual, u)\n", + " residual[1] = u[end÷2][1] + pi/2 # the solution at the middle of the time span should be -pi/2\n", + " residual[2] = u[end][1] - pi/2 # the solution at the end of the time span should be pi/2\n", + "end\n", + "\n", + "bvp1 = BVProblem(simplependulum, bc1, u₀, tspan)\n", + "sol1 = solve(bvp1, GeneralMIRK4(), dt=0.05)\n", + "plot(sol1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have boundary conditions at the beginning and the ending of the time span in common cases. We can use the `TwoPointBVProblem` problem type for such cases." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.5\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "0\n", + "\n", + "\n", + "2\n", + "\n", + "\n", + "4\n", + "\n", + "\n", + "t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "u1(t)\n", + "\n", + "\n", + "\n", + "u2(t)\n", + "\n", + "\n" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function bc2(residual, ua, ub) # ua is the beginning of the time span, and ub is the ending\n", + " residual[1] = ua[1] + pi/2 # the solution at the beginning of the time span should be -pi/2\n", + " residual[2] = ub[1] - pi/2 # the solution at the end of the time span should be pi/2\n", + "end\n", + "bvp2 = TwoPointBVProblem(simplependulum, bc2, u₀, tspan)\n", + "sol2 = solve(bvp2, MIRK4(), dt=0.05) # we need to use the MIRK4 solver for TwoPointBVProblem\n", + "plot(sol2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have used the mono-implicit Runge–Kutta (MIRK) method to solve the BVP, but we can always use reduce a BVP to an IVP and a root-finding problem, which is the `Shooting` method. If you can have a good initial guess, Shooting method works very well." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.5\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "-2.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "2.5\n", + "\n", + "\n", + "t\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "u1(t)\n", + "\n", + "\n", + "\n", + "u2(t)\n", + "\n", + "\n" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u₀_2 = [-1.6, -1.7]\n", + "sol3 = solve(bvp1, Shooting(Vern7()))\n", + "plot(sol3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 0.6.1-pre", + "language": "julia", + "name": "julia-0.6" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "0.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}