This repository was archived by the owner on Apr 16, 2025. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathad.jl
202 lines (184 loc) · 7.07 KB
/
ad.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
function SciMLBase.solve(
prob::NonlinearLeastSquaresProblem{<:Union{Number, <:AbstractArray}, iip,
<:Union{<:Dual{T, V, P}, <:AbstractArray{<:Dual{T, V, P}}}},
alg::AbstractSimpleNonlinearSolveAlgorithm,
args...;
kwargs...) where {T, V, P, iip}
sol, partials = __nlsolve_ad(prob, alg, args...; kwargs...)
dual_soln = __nlsolve_dual_soln(sol.u, partials, prob.p)
return SciMLBase.build_solution(
prob, alg, dual_soln, sol.resid; sol.retcode, sol.stats, sol.original)
end
function SciMLBase.solve(
prob::NonlinearProblem{<:Union{Number, <:AbstractArray}, iip,
<:Union{<:Dual{T, V, P}, <:AbstractArray{<:Dual{T, V, P}}}},
alg::AbstractSimpleNonlinearSolveAlgorithm,
args...;
kwargs...) where {T, V, P, iip}
prob = convert(ImmutableNonlinearProblem, prob)
sol, partials = __nlsolve_ad(prob, alg, args...; kwargs...)
dual_soln = __nlsolve_dual_soln(sol.u, partials, prob.p)
return SciMLBase.build_solution(
prob, alg, dual_soln, sol.resid; sol.retcode, sol.stats, sol.original)
end
for algType in (Bisection, Brent, Alefeld, Falsi, ITP, Ridder)
@eval begin
function SciMLBase.solve(
prob::IntervalNonlinearProblem{
uType, iip, <:Union{<:Dual{T, V, P}, <:AbstractArray{<:Dual{T, V, P}}}},
alg::$(algType),
args...;
kwargs...) where {uType, T, V, P, iip}
sol, partials = __nlsolve_ad(prob, alg, args...; kwargs...)
dual_soln = __nlsolve_dual_soln(sol.u, partials, prob.p)
return SciMLBase.build_solution(
prob, alg, dual_soln, sol.resid; sol.retcode, sol.stats,
sol.original, left = Dual{T, V, P}(sol.left, partials),
right = Dual{T, V, P}(sol.right, partials))
end
end
end
function __nlsolve_ad(
prob::Union{IntervalNonlinearProblem, NonlinearProblem, ImmutableNonlinearProblem},
alg, args...; kwargs...)
p = value(prob.p)
if prob isa IntervalNonlinearProblem
tspan = value.(prob.tspan)
newprob = IntervalNonlinearProblem(prob.f, tspan, p; prob.kwargs...)
else
newprob = remake(prob; p, u0 = value(prob.u0))
end
sol = solve(newprob, alg, args...; kwargs...)
uu = sol.u
f_p = __nlsolve_∂f_∂p(prob, prob.f, uu, p)
f_x = __nlsolve_∂f_∂u(prob, prob.f, uu, p)
z_arr = -f_x \ f_p
pp = prob.p
sumfun = ((z, p),) -> map(zᵢ -> zᵢ * ForwardDiff.partials(p), z)
if uu isa Number
partials = sum(sumfun, zip(z_arr, pp))
elseif p isa Number
partials = sumfun((z_arr, pp))
else
partials = sum(sumfun, zip(eachcol(z_arr), pp))
end
return sol, partials
end
function __nlsolve_ad(prob::NonlinearLeastSquaresProblem, alg, args...; kwargs...)
newprob = remake(prob; p = value(prob.p), u0 = value(prob.u0))
sol = solve(newprob, alg, args...; kwargs...)
uu = sol.u
# First check for custom `vjp` then custom `Jacobian` and if nothing is provided use
# nested autodiff as the last resort
if SciMLBase.has_vjp(prob.f)
if isinplace(prob)
_F = @closure (du, u, p) -> begin
resid = __similar(du, length(sol.resid))
prob.f(resid, u, p)
prob.f.vjp(du, resid, u, p)
du .*= 2
return nothing
end
else
_F = @closure (
u, p) -> begin
resid = prob.f(u, p)
return reshape(2 .* prob.f.vjp(resid, u, p), size(u))
end
end
elseif SciMLBase.has_jac(prob.f)
if isinplace(prob)
_F = @closure (
du, u, p) -> begin
J = __similar(du, length(sol.resid), length(u))
prob.f.jac(J, u, p)
resid = __similar(du, length(sol.resid))
prob.f(resid, u, p)
mul!(reshape(du, 1, :), vec(resid)', J, 2, false)
return nothing
end
else
_F = @closure (u,
p) -> begin
return reshape(2 .* vec(prob.f(u, p))' * prob.f.jac(u, p), size(u))
end
end
else
if isinplace(prob)
_F = @closure (du, u,
p) -> begin
_f = @closure (du, u) -> prob.f(du, u, p)
resid = __similar(du, length(sol.resid))
v, J = DI.value_and_jacobian(_f, resid, AutoForwardDiff(), u)
mul!(reshape(du, 1, :), vec(v)', J, 2, false)
return nothing
end
else
# For small problems, nesting ForwardDiff is actually quite fast
if __is_extension_loaded(Val(:Zygote)) && (length(uu) + length(sol.resid) ≥ 50)
# TODO: Remove once DI has the value_and_pullback_split defined
_F = @closure (u, p) -> begin
_f = Base.Fix2(prob.f, p)
return __zygote_compute_nlls_vjp(_f, u, p)
end
else
_F = @closure (
u, p) -> begin
_f = Base.Fix2(prob.f, p)
v, J = DI.value_and_jacobian(_f, AutoForwardDiff(), u)
return reshape(2 .* vec(v)' * J, size(u))
end
end
end
end
f_p = __nlsolve_∂f_∂p(prob, _F, uu, newprob.p)
f_x = __nlsolve_∂f_∂u(prob, _F, uu, newprob.p)
z_arr = -f_x \ f_p
pp = prob.p
sumfun = ((z, p),) -> map(zᵢ -> zᵢ * ForwardDiff.partials(p), z)
if uu isa Number
partials = sum(sumfun, zip(z_arr, pp))
elseif pp isa Number
partials = sumfun((z_arr, pp))
else
partials = sum(sumfun, zip(eachcol(z_arr), pp))
end
return sol, partials
end
@inline function __nlsolve_∂f_∂p(prob, f::F, u, p) where {F}
if isinplace(prob)
__f = p -> begin
du = __similar(u, promote_type(eltype(u), eltype(p)))
f(du, u, p)
return du
end
else
__f = Base.Fix1(f, u)
end
if p isa Number
return __reshape(ForwardDiff.derivative(__f, p), :, 1)
elseif u isa Number
return __reshape(ForwardDiff.gradient(__f, p), 1, :)
else
return ForwardDiff.jacobian(__f, p)
end
end
@inline function __nlsolve_∂f_∂u(prob, f::F, u, p) where {F}
if isinplace(prob)
__f = @closure (du, u) -> f(du, u, p)
return ForwardDiff.jacobian(__f, __similar(u), u)
else
__f = Base.Fix2(f, p)
u isa Number && return ForwardDiff.derivative(__f, u)
return ForwardDiff.jacobian(__f, u)
end
end
@inline function __nlsolve_dual_soln(u::Number, partials,
::Union{<:AbstractArray{<:Dual{T, V, P}}, Dual{T, V, P}}) where {T, V, P}
return Dual{T, V, P}(u, partials)
end
@inline function __nlsolve_dual_soln(u::AbstractArray, partials,
::Union{<:AbstractArray{<:Dual{T, V, P}}, Dual{T, V, P}}) where {T, V, P}
_partials = _restructure(u, partials)
return map(((uᵢ, pᵢ),) -> Dual{T, V, P}(uᵢ, pᵢ), zip(u, _partials))
end