forked from WangYueFt/dcp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
250 lines (201 loc) · 8.83 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import glob
import h5py
import numpy as np
from scipy.spatial.transform import Rotation
from torch.utils.data import Dataset
# Part of the code is referred from: https://github.com/charlesq34/pointnet
def download():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
datasets = [
('modelnet40_ply_hdf5_2048', 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'),
('3dmatch', 'http://web.tecnico.ulisboa.pt/sergio.agostinho/share/just-a-spoonful/3dmatch.zip'),
]
for folder, www in datasets:
if not os.path.exists(os.path.join(DATA_DIR, folder)):
zipfile = os.path.basename(www)
os.system('wget %s --no-check-certificate; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
return DATA_DIR
def load_data(partition, prefix=None):
if prefix:
DATA_DIR = prefix
else:
download()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data', 'modelnet40_ply_hdf5_2048')
all_data = []
all_label = []
for h5_name in sorted(glob.glob(os.path.join(DATA_DIR, 'ply_data_%s*.h5' % partition))):
f = h5py.File(h5_name, mode="r", swmr=True)
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.05):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip)
return pointcloud
class ModelNet40(Dataset):
def __init__(self, num_points, partition='train', gaussian_noise=False, unseen=False, factor=4, prefix=None):
self.data, self.label = load_data(partition, prefix=prefix)
self.num_points = num_points
self.partition = partition
self.gaussian_noise = gaussian_noise
self.unseen = unseen
self.label = self.label.squeeze()
self.factor = factor
if self.unseen:
######## simulate testing on first 20 categories while training on last 20 categories
if self.partition == 'test':
self.data = self.data[self.label>=20]
self.label = self.label[self.label>=20]
elif self.partition == 'train':
self.data = self.data[self.label<20]
self.label = self.label[self.label<20]
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
if self.gaussian_noise:
pointcloud = jitter_pointcloud(pointcloud)
if self.partition != 'train':
np.random.seed(item)
anglex = np.random.uniform() * np.pi / self.factor
angley = np.random.uniform() * np.pi / self.factor
anglez = np.random.uniform() * np.pi / self.factor
cosx = np.cos(anglex)
cosy = np.cos(angley)
cosz = np.cos(anglez)
sinx = np.sin(anglex)
siny = np.sin(angley)
sinz = np.sin(anglez)
Rx = np.array([[1, 0, 0],
[0, cosx, -sinx],
[0, sinx, cosx]])
Ry = np.array([[cosy, 0, siny],
[0, 1, 0],
[-siny, 0, cosy]])
Rz = np.array([[cosz, -sinz, 0],
[sinz, cosz, 0],
[0, 0, 1]])
R_ab = Rx.dot(Ry).dot(Rz)
R_ba = R_ab.T
translation_ab = np.array([np.random.uniform(-0.5, 0.5), np.random.uniform(-0.5, 0.5),
np.random.uniform(-0.5, 0.5)])
translation_ba = -R_ba.dot(translation_ab)
pointcloud1 = pointcloud.T
rotation_ab = Rotation.from_euler('zyx', [anglez, angley, anglex])
pointcloud2 = rotation_ab.apply(pointcloud1.T).T + np.expand_dims(translation_ab, axis=1)
euler_ab = np.asarray([anglez, angley, anglex])
euler_ba = -euler_ab[::-1]
pointcloud1 = np.random.permutation(pointcloud1.T).T
pointcloud2 = np.random.permutation(pointcloud2.T).T
return pointcloud1.astype('float32'), pointcloud2.astype('float32'), R_ab.astype('float32'), \
translation_ab.astype('float32'), R_ba.astype('float32'), translation_ba.astype('float32'), \
euler_ab.astype('float32'), euler_ba.astype('float32')
def __len__(self):
return self.data.shape[0]
def generate_random_poses(N, factor):
euler_ab = np.random.rand(N, 3) * np.pi / factor
euler_ba = -euler_ab[:,::-1]
rot = Rotation.from_euler("zyx", euler_ab)
R_ab = rot.as_matrix()
R_ba = R_ab.transpose(0, 2, 1)
translation_ab = np.random.rand(N, 3) - 0.5
translation_ba = - np.squeeze(translation_ab[:, None] @ R_ab, axis=1)
return dict(
R_ab=R_ab,
R_ba=R_ba,
translation_ab=translation_ab,
translation_ba=translation_ba,
euler_ab=euler_ab,
euler_ba=euler_ba,
)
class ThreeDMatch(Dataset):
def __init__(self, prefix, partition, minimum_overlap=0.3, factor=4):
super().__init__()
self.overlap_options = set([0.3, 0.5, 0.7])
if minimum_overlap is not None and minimum_overlap not in self.overlap_options:
msg = f"Accepted minimum_overlap values are the following: {self.overlap_options}"
raise ValueError(msg)
# Check and download data if needed
if not prefix:
data_dir = download()
self.prefix = os.path.join(data_dir, "3dmatch")
else:
self.prefix = prefix
# use stage information to populate list of files belonging to the split
scenes = self._parse_scenes(partition)
# retrieve all valid point cloud pairs
self.pairs = self._parse_sequences(scenes, minimum_overlap)
# generate random poses
self.poses = generate_random_poses(len(self.pairs), factor)
def _parse_scenes(self, partition):
file = os.path.join(self.prefix, "splits", f"{partition}_3dmatch.txt")
with open(file) as f:
scenes = [line[:-1] for line in f.readlines()]
return scenes
def _parse_sequences(self, scenes, minimum_overlap):
path = os.path.join(self.prefix, "preprocessed")
pattern = "@seq-[0-9][0-9].txt" if minimum_overlap is None else f"@seq-[0-9][0-9]-{minimum_overlap:0.2f}.txt"
pairs = []
for scene in scenes:
# sorting to ensure reproduceability across OSes
sequences = sorted(list(glob.glob(os.path.join(path, scene + pattern))))
for seq in sequences:
with open(seq) as f:
pairs += [tuple(line.split()) for line in f.readlines()]
return pairs
def __len__(self) -> int:
return len(self.pairs)
def __getitem__(self, index: int):
# load both point clouds
file0, file1 = self.pairs[index][:2]
pointcloud0 = np.load(os.path.join(self.prefix, "preprocessed", file0))["pcd"]
pointcloud1 = np.load(os.path.join(self.prefix, "preprocessed", file1))["pcd"]
# Rescale both point clouds, to lie inside a unit sphere
scale = np.max(np.linalg.norm(np.stack([pointcloud0, pointcloud1]), axis=-1))
pointcloud0 /= scale
pointcloud1 /= scale
# pose data
R_ab = self.poses["R_ab"][index]
R_ba = self.poses["R_ba"][index]
euler_ab = self.poses["euler_ab"][index]
euler_ba = self.poses["euler_ba"][index]
translation_ab = self.poses["translation_ab"][index]
translation_ba = self.poses["translation_ba"][index]
# Point cloud data in 3DMatch is perfectly superimposed
# apply transformation to target point cloud
pointcloud1 = pointcloud1 @ R_ba + translation_ab
out = (
pointcloud0.T.astype(np.float32),
pointcloud1.T.astype(np.float32),
R_ab.astype(np.float32),
translation_ab.astype(np.float32),
R_ba.astype(np.float32),
translation_ba.astype(np.float32),
euler_ab.astype(np.float32),
euler_ba.astype(np.float32),
)
return out
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
for data in train:
print(len(data))
break