-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhw1.cu
258 lines (193 loc) · 8 KB
/
hw1.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/* compile with: nvcc -O3 hw1.cu -o hw1 */
#include <stdio.h>
#include <cuda.h>
#include <sys/time.h>
///////////////////////////////////////////////// DO NOT CHANGE ///////////////////////////////////////
#define IMG_HEIGHT 256
#define IMG_WIDTH 256
//#define N_IMAGES 10000
#define N_IMAGES 500
#define NUM_THREADS 256
typedef unsigned char uchar;
#define CUDA_CHECK(f) do { \
cudaError_t e = f; \
if (e != cudaSuccess) { \
printf("Cuda failure %s:%d: '%s'\n", __FILE__, __LINE__, cudaGetErrorString(e)); \
exit(1); \
} \
} while (0)
#define SQR(a) ((a) * (a))
void process_image(uchar *img_in, uchar *img_out) {
int histogram[256] = { 0 };
for (int i = 0; i < IMG_WIDTH * IMG_HEIGHT; i++) {
histogram[img_in[i]]++;
}
int cdf[256] = { 0 };
int hist_sum = 0;
for (int i = 0; i < 256; i++) {
hist_sum += histogram[i];
cdf[i] = hist_sum;
}
int cdf_min = 0;
for (int i = 0; i < 256; i++) {
if (cdf[i] != 0) {
cdf_min = cdf[i];
break;
}
}
uchar map[256] = { 0 };
for (int i = 0; i < 256; i++) {
int map_value = (float)(cdf[i] - cdf_min) / (IMG_WIDTH * IMG_HEIGHT - cdf_min) * 255;
map[i] = (uchar)map_value;
}
for (int i = 0; i < IMG_WIDTH * IMG_HEIGHT; i++) {
img_out[i] = map[img_in[i]];
}
}
double static inline get_time_msec(void) {
struct timeval t;
gettimeofday(&t, NULL);
return t.tv_sec * 1e+3 + t.tv_usec * 1e-3;
}
long long int distance_sqr_between_image_arrays(uchar *img_arr1, uchar *img_arr2) {
long long int distance_sqr = 0;
for (int i = 0; i < N_IMAGES * IMG_WIDTH * IMG_HEIGHT; i++) {
distance_sqr += SQR(img_arr1[i] - img_arr2[i]);
}
return distance_sqr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
__device__ int arr_min(int arr[], int arr_size) {//return the min
int tid = threadIdx.x;
int half_length = arr_size / 2;
while (half_length >= 1) {
for (int i = tid; i < half_length; i += blockDim.x) {
if(arr[tid + i] < arr[i]) arr[i] = arr[tid + i];
}
__syncthreads();
half_length /= 2;
}
return arr[0]; //TODO
}
// this function implements the Kiggle-Stone algorithm
__device__ void prefix_sum(int arr[], int arr_size, int histogram[]) {
int tbsize = blockDim.x;
int tid = threadIdx.x;
int inc;
for (int stride = 1; stride < tbsize; stride *= 2) {
if (tid >= arr_size)
continue;
if (tid >= stride) {
inc = arr[tid - stride];
}
__syncthreads();
if (tid >= stride) {
arr[tid] += inc;
}
__syncthreads();
}
return;
}
__device__ void mapCalc(int map[], int min, int cdf[]) {
int id = threadIdx.x;
int map_value = ((double)(cdf[id] - min)/(IMG_WIDTH * IMG_HEIGHT - min)) * 255;
map[id] = map_value;
}
__global__ void process_image_kernel(uchar *in, uchar *out) {
__shared__ int l_histogram[256];
__shared__ int l_cdf[256];
__shared__ int map[256];
int tid = threadIdx.x;
int bid = blockIdx.x;
int tbsize = blockDim.x;
// zero histogram
l_histogram[tid] = 0;
__syncthreads();
for(int i = tid; i < IMG_WIDTH * IMG_HEIGHT; i += tbsize)
atomicAdd(&l_histogram[in[(IMG_WIDTH * IMG_HEIGHT)*bid + i]], 1);
__syncthreads();
// prepare the cdf array in advance
l_cdf[tid] = l_histogram[tid];
__syncthreads();
prefix_sum(l_cdf, 256, l_histogram);
__syncthreads();
int min = arr_min(l_histogram, 256);
__syncthreads();
mapCalc(map, min, l_cdf);
__syncthreads();
for(int i = tid; i < IMG_WIDTH * IMG_HEIGHT; i += tbsize) {
out[(IMG_WIDTH * IMG_HEIGHT)*bid + i] =
map[in[(IMG_WIDTH * IMG_HEIGHT)*bid + i]];
}
__syncthreads();
return ; //TODO
}
int main() {
///////////////////////////////////////////////// DO NOT CHANGE ///////////////////////////////////////
uchar *images_in;
uchar *images_out_cpu; //output of CPU computation. In CPU memory.
uchar *images_out_gpu_serial; //output of GPU task serial computation. In CPU memory.
uchar *images_out_gpu_bulk; //output of GPU bulk computation. In CPU memory.
CUDA_CHECK( cudaHostAlloc(&images_in, N_IMAGES * IMG_HEIGHT * IMG_WIDTH, 0) );
CUDA_CHECK( cudaHostAlloc(&images_out_cpu, N_IMAGES * IMG_HEIGHT * IMG_WIDTH, 0) );
CUDA_CHECK( cudaHostAlloc(&images_out_gpu_serial, N_IMAGES * IMG_HEIGHT * IMG_WIDTH, 0) );
CUDA_CHECK( cudaHostAlloc(&images_out_gpu_bulk, N_IMAGES * IMG_HEIGHT * IMG_WIDTH, 0) );
/* instead of loading real images, we'll load the arrays with random data */
srand(0);
for (long long int i = 0; i < N_IMAGES * IMG_WIDTH * IMG_HEIGHT; i++) {
images_in[i] = rand() % 256;
}
double t_start, t_finish;
// CPU computation. For reference. Do not change
printf("\n=== CPU ===\n");
t_start = get_time_msec();
for (int i = 0; i < N_IMAGES; i++) {
uchar *img_in = &images_in[i * IMG_WIDTH * IMG_HEIGHT];
uchar *img_out = &images_out_cpu[i * IMG_WIDTH * IMG_HEIGHT];
process_image(img_in, img_out);
}
t_finish = get_time_msec();
printf("total time %f [msec]\n", t_finish - t_start);
long long int distance_sqr;
///////////////////////////////////////////////////////////////////////////////////////////////////////////
uchar *image_in;
uchar *image_out;
// GPU task serial computation
printf("\n=== GPU Task Serial ===\n"); //Do not change
//TODO: allocate GPU memory for a single input image and a single output image
CUDA_CHECK( cudaMalloc((void **)&image_in, IMG_HEIGHT * IMG_WIDTH) );
CUDA_CHECK( cudaMalloc((void **)&image_out, IMG_HEIGHT * IMG_WIDTH) );
t_start = get_time_msec(); //Do not change
//TODO: in a for loop:
for (int i=0; i < N_IMAGES; i++) {
// Copying src image from the input images
CUDA_CHECK(cudaMemcpy(image_in, &images_in[i * IMG_WIDTH*IMG_HEIGHT], IMG_WIDTH*IMG_HEIGHT, cudaMemcpyDefault));
process_image_kernel <<< 1, NUM_THREADS >>> (image_in, image_out);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy(&images_out_gpu_serial[i * IMG_HEIGHT*IMG_WIDTH], image_out, IMG_WIDTH*IMG_HEIGHT, cudaMemcpyDefault));
}
cudaFree(image_in);
cudaFree(image_out);
t_finish = get_time_msec(); //Do not change
distance_sqr = distance_sqr_between_image_arrays(images_out_cpu, images_out_gpu_serial); // Do not change
printf("total time %f [msec] distance from baseline %lld (should be zero)\n", t_finish - t_start, distance_sqr); //Do not change
// GPU bulk
printf("\n=== GPU Bulk ===\n"); //Do not change
//TODO: allocate GPU memory for a all input images and all output images
CUDA_CHECK( cudaMalloc((void **)&image_in, N_IMAGES * IMG_HEIGHT * IMG_WIDTH) );
CUDA_CHECK( cudaMalloc((void **)&image_out, N_IMAGES * IMG_HEIGHT * IMG_WIDTH) );
//TODO: copy all input images from images_in to the GPU memory you allocated
t_start = get_time_msec(); //Do not change
CUDA_CHECK(cudaMemcpy(image_in, images_in, N_IMAGES*IMG_WIDTH*IMG_HEIGHT, cudaMemcpyDefault));
//TODO: invoke a kernel with N_IMAGES threadblocks, each working on a different image
process_image_kernel <<< N_IMAGES, NUM_THREADS >>> (image_in, image_out);
CUDA_CHECK(cudaDeviceSynchronize());
//TODO: copy output images from GPU memory to images_out_gpu_bulk
CUDA_CHECK(cudaMemcpy(images_out_gpu_bulk, image_out, N_IMAGES*IMG_WIDTH*IMG_HEIGHT, cudaMemcpyDefault));
t_finish = get_time_msec(); //Do not change
cudaFree(image_in);
cudaFree(image_out);
distance_sqr = distance_sqr_between_image_arrays(images_out_cpu, images_out_gpu_bulk); // Do not change
printf("total time %f [msec] distance from baseline %lld (should be zero)\n", t_finish - t_start, distance_sqr); //Do not chhange
return 0;
}