-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathaccelerate_main.py
80 lines (63 loc) · 2.63 KB
/
accelerate_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
import torch
import torch.optim as optim
from transformers import BertForSequenceClassification
import accelerate
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from utils import collate_fn, bert_name, load_data_and_labels, Data
import time
epochs = 10
lr = 2e-5
batch_size = 64
accelerator = accelerate.Accelerator()
def train():
x_text, y = load_data_and_labels("./data/rt-polarity.pos", "./data/rt-polarity.neg")
x_train, x_test, y_train, y_test = train_test_split(x_text, y, test_size=0.1)
size = accelerator.num_processes
train_data = Data(x_train, y_train)
test_data = Data(x_test, y_test)
train_loader = DataLoader(train_data, batch_size=batch_size*size, collate_fn=collate_fn)
test_loader = DataLoader(test_data, batch_size=batch_size*size, shuffle=False, collate_fn=collate_fn)
accelerator.print(f"train dataset: {len(train_loader.dataset)}, test dataset: {len(test_loader.dataset)}")
accelerate.utils.set_seed(1234)
model = BertForSequenceClassification.from_pretrained(bert_name, num_labels=2)
optimizer = optim.Adam(model.parameters(), lr=lr*size)
model, optimizer, train_loader, test_loader = accelerator.prepare(model, optimizer, train_loader, test_loader)
best_acc = -0.1
print(f"rank {accelerator.process_index} start training...")
for epoch in range(1, epochs):
total_loss = 0.0
model.train()
start_time = time.time()
for step, batch_data in enumerate(train_loader):
inputs, labels = batch_data
optimizer.zero_grad()
output = model(**inputs, labels=labels)
accelerator.backward(output[0])
optimizer.step()
total_loss += output[0].item()
end_time = time.time()
acc = test(model, test_loader)
if acc > best_acc:
best_acc = acc
accelerator.print(f"Epoch{epoch}: loss: {total_loss:.4f}, acc: {acc:.4f}, time: {(end_time - start_time):.2f}s")
accelerator.print("*"*20)
accelerator.print(f"finished; best acc: {best_acc:.4f}")
def test(model, test_loader):
model.eval()
preds = []
labels = []
with torch.no_grad():
for data in test_loader:
inputs, truth = data
output = model(**inputs)['logits']
predict = torch.max(output.data, 1)[1]
preds.append(accelerator.gather(predict))
labels.append(accelerator.gather(truth))
model.train()
predict = torch.cat(preds, 0)
labels = torch.cat(labels, 0)
correct = (predict == labels).sum().item()
return correct * 1.0 / len(predict)
train()