-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMTCNN_face_detection.py
140 lines (97 loc) · 4.29 KB
/
MTCNN_face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from mtcnn import MTCNN
import cv2
import time
import os
import numpy as np
def align_face_mtcnn(img, left_eye, right_eye):
desiredLeftEye = (0.39, 0.39)
desiredFaceWidth = 300
desiredFaceHeight = None
if desiredFaceHeight is None:
desiredFaceHeight = desiredFaceWidth
delta_x = right_eye[0] - left_eye[0]
delta_y = right_eye[1] - left_eye[1]
angle = np.arctan(delta_y/delta_x)
angle = (angle * 180) / np.pi
desiredRightEyeX = 1.0 - desiredLeftEye[0]
dist = np.sqrt((delta_x ** 2) + (delta_y ** 2))
desiredDist = (desiredRightEyeX - desiredLeftEye[0])
desiredDist *= desiredFaceWidth
scale = desiredDist / dist
eyesCenter = ((left_eye[0] + right_eye[0]) // 2,
(left_eye[1] + right_eye[1]) // 2)
# cv2.circle(img, (eyesCenter[0], eyesCenter[1]), 3, (255, 0, 255), -1)
M = cv2.getRotationMatrix2D(eyesCenter, (angle), scale)
tX = desiredFaceWidth * 0.5
tY = desiredFaceHeight * desiredLeftEye[1]
M[0, 2] += (tX - eyesCenter[0])
M[1, 2] += (tY - eyesCenter[1])
(w, h) = (desiredFaceWidth, desiredFaceHeight)
rotated = cv2.warpAffine(img, M, (w, h))
return rotated
def mtcnn_face_detector_image(originalimg, path, confidence=0.8):
'''
The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':
The bounding box is formatted as [x, y, width, height] under the key 'box'.
The confidence is the probability for a bounding box to be matching a face.
The keypoints are formatted into a JSON object with the keys 'left_eye,
'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).
Another good example of usage can be found in the file “example.py.”
located in the root of this repository. Also, you can run the Jupyter Notebook “example.ipynb” for another example of usage
'''
detector = MTCNN()
img = originalimg
img = cv2.imread(img)
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
result = detector.detect_faces(rgb)
for i in result:
if i['confidence'] > confidence: # setting the threshold
# Uncomment below code to see the B.box of detected face and the landmarks
x, y, w, h = i['box']
# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 1)
# c = 0
# for (x, y) in i['keypoints'].values():
# cv2.circle(img, (x, y), 3, (0, 0, 255), -1)
# cv2.putText(img, str(c + 1), (x - 10, y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
# c += 1
left_eye = i['keypoints']['left_eye']
right_eye = i['keypoints']['right_eye']
# cv2.line(img, right_eye, left_eye, (67, 67, 67), 2)
rotated = align_face_mtcnn(
img, left_eye, right_eye) # face alignment
cv2.imshow('rotated', rotated)
cv2.imshow('MTCNN output', img)
cv2.waitKey(0)
# Below code will give the new image with required area of interest
img_name = originalimg.split('/')[-1].split('.')[0]
path = os.path.join(path, f'{img_name+str(np.random.randint(0,100))}.jpg')
# cv2.imwrite(path, rotated)
def main_fun(base_dir):
sub_dir = os.listdir(base_dir)
start = time.time()
for sub in sub_dir:
sub_path = os.path.join(base_dir, sub)
images = os.listdir(sub_path)
output_dir = os.path.join(sub_path, sub + '_mtcnn')
for image in images:
image_path = os.path.join(sub_path, image)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if os.path.exists(image_path):
mtcnn_face_detector_image(
image_path, output_dir) # path and img
else:
continue
end = time.time()
print('The detection time for MTCNN was', (end-start))
if __name__ == '__main__':
base_dir = 'celebraty'
# testing images
# img = 'images/tilted_head_second.jpg'
# img = 'images/tilted_head_third.jpg'
# img = 'images/animated.jpg'
# img = 'images/double_head.jpg'
# img = 'images/pryinka_karki5.jpg'
# mtcnn_face_detector_image(img, 7)
main_fun(base_dir)