-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopencv_dnn_face_detection.py
187 lines (139 loc) · 6.34 KB
/
opencv_dnn_face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import dlib
import cv2
from imutils import face_utils
import os
import time
def align_face(img, left_eye, right_eye):
desiredLeftEye = (0.39, 0.39)
desiredFaceWidth = 300
desiredFaceHeight = None
if desiredFaceHeight is None:
desiredFaceHeight = desiredFaceWidth
delta_x = right_eye[0] - left_eye[0]
delta_y = right_eye[1] - left_eye[1]
# angle = np.degrees(np.arctan2(delta_y, delta_x)) - 180
# 4-quadrant (range -180 to 180)
# 2-quadrant inverse function (range -90 to 90)
angle = np.arctan(delta_y/delta_x)
# converting the radian into degree
angle = (angle * 180) / np.pi
# computing the desired right eye coordinate
desiredRightEyeX = 1.0 - desiredLeftEye[0]
# calculating the distance of the original image
dist = np.sqrt((delta_x ** 2) + (delta_y ** 2))
# calculating the distance of the scaled image
desiredDist = (desiredRightEyeX - desiredLeftEye[0])
# scales our eye distance based on the desired width.
desiredDist *= desiredFaceWidth
scale = desiredDist / dist
eyesCenter = ((left_eye[0] + right_eye[0]) // 2,
(left_eye[1] + right_eye[1]) // 2)
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
tX = desiredFaceWidth * 0.5
tY = desiredFaceHeight * desiredLeftEye[1]
M[0, 2] += (tX - eyesCenter[0])
M[1, 2] += (tY - eyesCenter[1])
(w, h) = (desiredFaceWidth, desiredFaceHeight)
rotated = cv2.warpAffine(src=img, M=M, dsize=(w, h))
return rotated
def opencv_dnn_image(configfile, modelfile, original_image, path=5, threshold=0.85):
modelFile = modelfile
configFile = configfile
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
image = original_image
image = cv2.imread(image)
image = cv2.resize(image, (300, 300))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
(h, w) = image.shape[:2]
# we will have an image of size(h,w,3) but Opencv DNN excepts it to be (1,3,300,300)
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(
300, 300), mean=(104.0, 177.0, 123.0))
# We can feed the processed image to the caffe model now. This is a basic feed forward step in neural networks.
net.setInput(blob)
detections = net.forward()
predictor = dlib.shape_predictor('shape_predictor_5_face_landmarks.dat')
for i in detections[0, 0]:
confidence = i[2]
if confidence >= threshold: # making the coordinates DLIB compatible.
left = (i[3] * w).astype(int)
top = (i[4] * h).astype(int)
right = (i[5] * w).astype(int)
bottom = (i[6] * h).astype(int)
# cv2.rectangle(image, (left, top),
# (right, bottom), (0, 0, 255), 2)
# text = "{:.2f}%".format(confidence * 100)
# cv2.putText(image, text, (left, top),
# cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
rect = dlib.rectangle(left, top, right, bottom)
shape = predictor(gray, rect)
# print('shape before utils', shape)
# convert the landmark predictor into (x,y) coordinated in Numpy format.
shape = face_utils.shape_to_np(shape)
# print('shape after utils \n', shape)
# print(shape[0])
# print(shape[1])
# for (i, (x, y)) in enumerate(shape):
# cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
# cv2.putText(image, str(i + 1), (x - 10, y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_5_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_5_IDXS["right_eye"]
# print(lStart, lEnd)
# print(rStart, rEnd)
# this will fix which is right and left eye of the input image
leftEyePts = shape[lStart:lEnd]
rightEyePts = shape[rStart:rEnd]
# print('left eye pts:', leftEyePts)
# cv2.line(image, rightEyePts[0], leftEyePts[0], (67, 67, 67), 2)
# print(rightEyePts)
# I changed here(removed the astype('int'))
leftEyeCenter = leftEyePts.mean(axis=0)
# print(leftEyeCenter)
# cv2.circle(image, (int(leftEyeCenter[0]), int(
# leftEyeCenter[1])), 3, (255, 255, 255), -1)
rightEyeCenter = rightEyePts.mean(
axis=0) # and the error was solved
# cv2.circle(image, (int(rightEyeCenter[0]), int(
# rightEyeCenter[1])), 3, (255, 255, 255), -1)
# aligning the face from a given input image.
rotated = align_face(image, leftEyeCenter, rightEyeCenter)
# cv2.imshow("Output OpenCV DNN", image)
# cv2.imshow('rotated Opencv DNN', rotated)
# cv2.waitKey(0)
img_name = original_image.split('/')[-1].split('.')[0]
path = os.path.join(
path, f'{img_name+str(np.random.randint(0,100))}.jpg')
cv2.imwrite(path, rotated)
def main_fun(configFile, modelFile, base_dir):
sub_dir = os.listdir(base_dir)
start = time.time()
for sub in sub_dir:
sub_path = os.path.join(base_dir, sub)
images = os.listdir(sub_path)
output_dir = os.path.join(sub_path, sub + '_DNN')
for image in images:
image_path = os.path.join(sub_path, image)
if os.path.isfile(image_path):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if os.path.exists(image_path):
opencv_dnn_image(configFile, modelFile, image_path, output_dir)
else:
continue
end = time.time()
print('The detection time for OpenCV DNN was', (end-start))
if __name__ == '__main__':
modelFile = "res10_300x300_ssd_iter_140000.caffemodel"
configFile = "deploy.prototxt.txt"
base = 'celebraties'
# image = 'images/double_head.jpg'
# image = 'images/tilted_head.jpg'
# image = 'images/tilted_head_third.jpg'
# image = 'images/face.jpg'
# image = 'images/animated.jpg'
# image = 'images/a.png'
image = 'images/pryinka_karki5.jpg'
image = 'images/abhishek3.jpg'
# opencv_dnn_image(configFile, modelFile, image)
main_fun(configFile, modelFile, base)