-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsmc.c
409 lines (324 loc) · 14 KB
/
csmc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#define _XOPEN_SOURCE 600 //To support -std=c99 in place of -std=gnu99
//Libraries
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>
#include <pthread.h>
#include <time.h>
//Defines
#define CODING_SLEEP_TIME 200
#define TUTORING_SLEEP_TIME 200
// Data structure arguments
int *studentsInWaitingAreaQueue = NULL; //Students in the queue
int *studentIdsQueue = NULL; //ID of students
int *studentPriorities = NULL; //Priority of students
int *tutorIdsQueue = NULL; //ID of tutors
int *tutoringFinishedQueue = NULL; //Queue to indicate that tutoring finished
int **priorityQueueForTutoring = NULL; //Priority queue
//Input arguments
int numberOfChairsInWaitingArea = 0; //Number of chairs
int numberOfStudents = 0; //Number of students
int numberOfTutors = 0; //Number of tutors
int numberOfTimesHelpRequired = 0; //Number of times each student will take help
//Program related arguments
int numberOfOccupiedChairs = 0;
int numberOfStudentsHelped = 0;
int totalTutoringRequests = 0;
int totalTutoringSessionsHeld = 0;
int studentsBeingTutoredNow = 0;
// thread-functions
void *coordinatorThread();
void *studentThread(void *studentId);
void *tutorThread(void *tutorId);
sem_t semCoordinatorIsWaitingForStudent;
sem_t semTutorIsWaitingForCoordinator;
pthread_mutex_t chairsLock;
pthread_mutex_t queueLock;
pthread_mutex_t tutoringFinishedQueueLock;
void *coordinatorThread()
{
int tIterator = 0;
while(1)
{
//If all students are helped out, terminate the coordinatorThread and tutorThread
if(numberOfStudentsHelped == numberOfStudents)
{
//Terminate the tutors first
for(tIterator = 0; tIterator < numberOfTutors; tIterator++)
{
//Sending a signal informing tutors to terminate
sem_post(&semTutorIsWaitingForCoordinator);
}
//Then coordinator terminates itself
pthread_exit(NULL);
}
//Wait for student's availability notification
sem_wait(&semCoordinatorIsWaitingForStudent);
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
for(tIterator = 0; tIterator < numberOfStudents; tIterator++)
{
//Adding each student to the 2-d priority queue
if(studentsInWaitingAreaQueue[tIterator] > -1)
{
//priorityQueueForTutoring contains 2 variables for each student
//0th Index: Student's priority
//1st Index: Student's position in the waiting queue
priorityQueueForTutoring[tIterator][0] = studentPriorities[tIterator];
priorityQueueForTutoring[tIterator][1] = studentsInWaitingAreaQueue[tIterator];
printf("C: Student %d with priority %d added to the queue. Waiting students now = %d. Total requests = %d\n", studentIdsQueue[tIterator], studentPriorities[tIterator], numberOfOccupiedChairs, totalTutoringRequests);
//Clearing the student's position in the waitingAreaQueue and resetting it
studentsInWaitingAreaQueue[tIterator] = -1;
//Send signal to tutor to call the student with highest priority for tutoring
sem_post(&semTutorIsWaitingForCoordinator);
}
}
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
}
}
void *studentThread(void *studentId)
{
int studentIdOfCurrentStudent = *(int *)studentId;
while(1)
{
if(studentPriorities[studentIdOfCurrentStudent - 1] >= numberOfTimesHelpRequired)
{
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
numberOfStudentsHelped++;
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
//Notify coordinate to terminate
sem_post(&semCoordinatorIsWaitingForStudent);
pthread_exit(NULL);
}
//Student is coding for a random period upto 2ms
float codingTime = (float)(rand() % CODING_SLEEP_TIME) / 100;
usleep(codingTime);
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
if(numberOfOccupiedChairs >= numberOfChairsInWaitingArea)
{
printf("S: Student %d found no empty chair. Will try again later.\n", studentIdOfCurrentStudent);
pthread_mutex_unlock(&chairsLock);
continue;
}
numberOfOccupiedChairs++;
totalTutoringRequests++;
//All incoming students are initialised with 0 or the current value of totalTutoringRequests.
studentsInWaitingAreaQueue[studentIdOfCurrentStudent - 1] = totalTutoringRequests;
printf("S: Student %d takes a seat. Empty chairs = %d.\n", studentIdOfCurrentStudent, numberOfChairsInWaitingArea - numberOfOccupiedChairs);
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
//Inform coordinator that student is waiting
sem_post(&semCoordinatorIsWaitingForStudent);
//Wait for tutor to be available
while(tutoringFinishedQueue[studentIdOfCurrentStudent - 1] == -1);
int tutorIdCurrentlyTutoring = (tutoringFinishedQueue[studentIdOfCurrentStudent - 1] - numberOfStudents);
printf("S: Student %d received help from Tutor %d.\n", studentIdOfCurrentStudent, tutorIdCurrentlyTutoring);
//Acquire lock for shared variable
pthread_mutex_lock(&tutoringFinishedQueueLock);
tutoringFinishedQueue[studentIdOfCurrentStudent - 1] = -1;
//Release lock for shared variable
pthread_mutex_unlock(&tutoringFinishedQueueLock);
//Decrease the priority of student after providing help
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
studentPriorities[studentIdOfCurrentStudent - 1]++;
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
}
}
void *tutorThread(void *tutorId)
{
int tutorIdOfCurrentTutor = *(int *)tutorId;
int numberOfTimesStudentIsTutored;
int tIterator = 0;
//For students with same number of times being tutored, the one who comes first has higher priority
int studentSequence;
int studentId;
while(1)
{
//If all students are helped out, terminate the tutorThread
if(numberOfStudentsHelped == numberOfStudents)
{
pthread_exit(NULL);
}
numberOfTimesStudentIsTutored = numberOfTimesHelpRequired - 1;
studentSequence = numberOfStudents * numberOfTimesHelpRequired + 1;
studentId = -1;
//Wait for signal from coordinatorThread to be woken up
sem_wait(&semTutorIsWaitingForCoordinator);
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
//Getting the latest values of numberOfTimesStudentIsTutored, studentSequence, studentId for each student
for(tIterator = 0; tIterator < numberOfStudents; tIterator++)
{
//priorityQueueForTutoring contains 2 variables for each student
//0th Index: Student's priority
//1st Index: Student's position in the waiting queue
if(priorityQueueForTutoring[tIterator][0] > -1 &&
priorityQueueForTutoring[tIterator][0] <= numberOfTimesStudentIsTutored &&
priorityQueueForTutoring[tIterator][1] < studentSequence)
{
numberOfTimesStudentIsTutored = priorityQueueForTutoring[tIterator][0];
studentSequence = priorityQueueForTutoring[tIterator][1];
studentId = studentIdsQueue[tIterator];
}
}
//If the studentId was not updated, he/she is not in the queue
if(studentId == -1)
{
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
continue;
}
//Resetting the priority queue
priorityQueueForTutoring[studentId - 1][0] = -1;
priorityQueueForTutoring[studentId - 1][1] = -1;
//Decreasing occupied chair count as the student is leaving the chair and will proceed for tutoring
numberOfOccupiedChairs--;
//Since the student left the chair and is moving for tutoring, increment its count
studentsBeingTutoredNow++;
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
//Student is being tutored (0.2 ms)
usleep(TUTORING_SLEEP_TIME);
//After tutoring the student
//Acquire lock for shared variable
pthread_mutex_lock(&chairsLock);
//Since student's tutoring is done, decrement tutoringNow after tutoring.
studentsBeingTutoredNow--;
//Increment the number of sessions held after tutoring
totalTutoringSessionsHeld++;
printf("T: Student %d tutored by Tutor %d. Students tutored now = %d. Total sessions tutored = %d\n", studentId, tutorIdOfCurrentTutor - numberOfStudents, studentsBeingTutoredNow, totalTutoringSessionsHeld);
//Release lock for shared variable
pthread_mutex_unlock(&chairsLock);
//Acquire lock for shared variable
pthread_mutex_lock(&tutoringFinishedQueueLock);
//Update shared data so student can know who tutored him.
tutoringFinishedQueue[studentId - 1] = tutorIdOfCurrentTutor;
//Release lock for shared variable
pthread_mutex_unlock(&tutoringFinishedQueueLock);
}
}
void initializeVariables(int iNumberOfStudents, int iNumberOfTutors, int iNumberOfChairsInWaitingArea, int iNumberOfTimesHelpRequired)
{
int tIterator = 0;
if(iNumberOfStudents < 1)
{
fprintf(stderr, "ERROR! There should be at least 1 student\n");
exit(-1);
}
if(iNumberOfTutors < 1)
{
fprintf(stderr, "ERROR! There should be at least 1 tutor\n");
exit(-1);
}
if(iNumberOfChairsInWaitingArea < 1)
{
fprintf(stderr, "ERROR! There should be at least 1 chair in waiting area\n");
exit(-1);
}
if(iNumberOfTimesHelpRequired < 0)
{
fprintf(stderr, "ERROR! No negative values of help allowed\n");
exit(-1);
}
studentsInWaitingAreaQueue = (int *) malloc(iNumberOfStudents * sizeof(int));
studentIdsQueue = (int *) malloc(iNumberOfStudents * sizeof(int));
studentPriorities = (int *) malloc(iNumberOfStudents * sizeof(int));
tutorIdsQueue = (int *) malloc(iNumberOfTutors * sizeof(int));
tutoringFinishedQueue = (int *) malloc(iNumberOfStudents * sizeof(int));
//priorityQueueForTutoring contains 2 variables for each student
//0th Index: Student's priority
//1st Index: Student's position in the waiting queue
priorityQueueForTutoring = (int **) malloc(iNumberOfStudents * sizeof(int *));
if(NULL == priorityQueueForTutoring)
{
fprintf(stderr, "ERROR! Memory allocation failed\n");
exit(-1);
}
for(tIterator = 0; tIterator < iNumberOfStudents; tIterator++)
{
priorityQueueForTutoring[tIterator] = (int *) malloc(2 * sizeof(int));
if(NULL == priorityQueueForTutoring)
{
fprintf(stderr, "ERROR! Memory allocation failed\n");
exit(-1);
}
}
if((NULL == studentsInWaitingAreaQueue) || (NULL == studentIdsQueue) || (NULL == studentPriorities) || (NULL == tutorIdsQueue) || (NULL == tutoringFinishedQueue))
{
fprintf(stderr, "ERROR! Memory allocation failed\n");
exit(-1);
}
}
int main(int argc, char *argv[])
{
int tIterator = 0;
//Check for number of passed arguments
if(argc != 5)
{
fprintf(stderr, "ERROR! Please provide sufficient arguments: #students, #tutors, #chairs, #help\n");
exit(-1);
}
//Convert arguments from character to integer
numberOfStudents = atoi(argv[1]);
numberOfTutors = atoi(argv[2]);
numberOfChairsInWaitingArea = atoi(argv[3]);
numberOfTimesHelpRequired = atoi(argv[4]);
//Argument validation and dynamic memory allocation
initializeVariables(numberOfStudents, numberOfTutors, numberOfChairsInWaitingArea, numberOfTimesHelpRequired);
//Fill default values
for(tIterator = 0; tIterator < numberOfStudents; tIterator++)
{
studentsInWaitingAreaQueue[tIterator] = -1;
tutoringFinishedQueue[tIterator] = -1;
priorityQueueForTutoring[tIterator][0] = -1;
priorityQueueForTutoring[tIterator][1] = -1;
studentPriorities[tIterator] = 0;
}
//Initialize lock and semaphores
//Initialized to 0 as on 1st wait call to sem, the current thread should be allowed and other threads should be blocked
sem_init(&semCoordinatorIsWaitingForStudent, 0, 0);
sem_init(&semTutorIsWaitingForCoordinator, 0, 0);
pthread_mutex_init(&chairsLock, NULL);
pthread_mutex_init(&queueLock, NULL);
pthread_mutex_init(&tutoringFinishedQueueLock, NULL);
//Initialize threads
pthread_t students[numberOfStudents];
pthread_t tutors[numberOfTutors];
pthread_t coordinator;
//Create threads
//Coordinator thread
pthread_create(&coordinator, NULL, coordinatorThread, NULL);
for(tIterator = 0; tIterator < numberOfStudents; tIterator++)
{
studentIdsQueue[tIterator] = tIterator + 1;
//Student thread
pthread_create(&students[tIterator], NULL, studentThread, (void *)&studentIdsQueue[tIterator]);
}
for(tIterator = 0; tIterator < numberOfTutors; tIterator++)
{
tutorIdsQueue[tIterator] = tIterator + numberOfStudents + 1;
//Tutor thread
pthread_create(&tutors[tIterator], NULL, tutorThread, (void *)&tutorIdsQueue[tIterator]);
}
//Join threads
//Coordinator thread
pthread_join(coordinator, NULL);
for(tIterator = 0; tIterator < numberOfStudents; tIterator++)
{
//Student thread
pthread_join(students[tIterator], NULL);
}
for(tIterator = 0; tIterator < numberOfTutors; tIterator++)
{
//Tutor thread
pthread_join(tutors[tIterator], NULL);
}
return 0;
}