-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfed_simclr.py
206 lines (168 loc) · 8.42 KB
/
fed_simclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import copy
import numpy as np
from tqdm import tqdm
import argparse
import torch
from PIL import Image
from torch.utils.data import DataLoader
import json
import math
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import random
from models import get_encoder_architecture
from datasets import get_pretraining_dataset, get_usergroup, get_testing_dataset
from evaluation import knn_predict
from aggregator import aggregating
def local_train(net, data_loader, train_optimizer, epoch, args):
net.train()
total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader)
for im_1, im_2 in train_bar:
im_1, im_2 = im_1.cuda(non_blocking=True), im_2.cuda(non_blocking=True)
feature_1, out_1 = net(im_1)
feature_2, out_2 = net(im_2)
# [2*B, D]
out = torch.cat([out_1, out_2], dim=0)
# [2*B, 2*B]
sim_matrix = torch.exp(torch.mm(out, out.t().contiguous()) / args.knn_t)
mask = (torch.ones_like(sim_matrix) - torch.eye(2 * args.batch_size, device=sim_matrix.device)).bool()
# [2*B, 2*B-1]
sim_matrix = sim_matrix.masked_select(mask).view(2 * args.batch_size, -1)
# compute loss (cosine similarity)
pos_sim = torch.exp(torch.sum(out_1 * out_2, dim=-1) / args.knn_t)
# [2*B]
pos_sim = torch.cat([pos_sim, pos_sim], dim=0)
loss = (- torch.log(pos_sim / sim_matrix.sum(dim=-1))).mean()
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += data_loader.batch_size
total_loss += loss.item() * data_loader.batch_size
train_bar.set_description('Local Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format(epoch, args.local_epoch, train_optimizer.param_groups[0]['lr'], total_loss / total_num))
return total_loss / total_num, net.state_dict()
def test(net, memory_data_loader, test_data_clean_loader, epoch, args):
net.eval()
classes = len(memory_data_loader.dataset.classes)
total_top1, total_num, feature_bank = 0.0, 0, []
with torch.no_grad():
# generate feature bank
for data, target in tqdm(memory_data_loader, desc='Feature extracting'):
feature = net(data.cuda(non_blocking=True))
feature = F.normalize(feature, dim=1)
feature_bank.append(feature)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device)
# loop test data to predict the label by weighted knn search
test_bar = tqdm(test_data_clean_loader)
for data, target in test_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
feature = net(data)
feature = F.normalize(feature, dim=1)
pred_labels = knn_predict(feature, feature_bank, feature_labels, classes, args.knn_k, args.knn_t)
total_num += data.size(0)
total_top1 += (pred_labels[:, 0] == target).float().sum().item()
test_bar.set_description('Test Epoch: [{}/{}] Acc@1:{:.2f}%'.format(epoch, args.epochs, total_top1 / total_num * 100))
return total_top1 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Fedrated pretraining encoder')
parser.add_argument('--aggregator', default='fedavg', type=str, help='aggregating algorithm used by the server')
parser.add_argument('--lr', default=0.001, type=float, help='initial learning rate')
parser.add_argument('--batch_size', default=128, type=int, help='Number of images in each mini-batch')
parser.add_argument('--pretraining_dataset', type=str, default='cifar10')
parser.add_argument('--results_dir', default='./result/pretrained_encoders', type=str, metavar='PATH',
help='path to save the results (default: none)')
parser.add_argument('--seed', default=100, type=int, help='which seed the code runs on')
parser.add_argument('--gpu', default='0', type=str, help='which gpu the code runs on')
parser.add_argument('--knn-t', default=0.5, type=float, help='softmax temperature in kNN monitor')
parser.add_argument('--knn-k', default=200, type=int, help='k in kNN monitor')
parser.add_argument('--num_users', type=int, default=10, help="number of users: K")
parser.add_argument('--epochs', type=int, default=200, help="number of rounds of global training")
parser.add_argument('--frac', type=float, default=0.2, help='the fraction of clients selected for training in each round: C')
parser.add_argument('--local_epoch', type=int, default=2, help="the number of local epochs: E")
parser.add_argument('--iid', type=int, default=0, help='Default set to Non-IID. Set to 1 for IID.')
CUDA_LAUNCH_BLOCKING = 1
args = parser.parse_args()
# Set the random seeds and GPU information
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
args.data_dir = f'./data/{args.pretraining_dataset}/'
# load user groups(dataset of each group)
user_groups = get_usergroup(args)
memory_data, test_data_clean = get_testing_dataset(args)
memory_loader = DataLoader(
memory_data,
batch_size=args.batch_size,
shuffle=False,
# num_workers=2,
pin_memory=True
)
test_loader_clean = DataLoader(
test_data_clean,
batch_size=args.batch_size,
shuffle=False,
# num_workers=2,
pin_memory=True
)
# initialize the global model
global_model = get_encoder_architecture(args).cuda()
# logging
results = {'train_loss_avg_of_all_clients': [], 'test_acc@1_of_global_model': []}
if not os.path.exists(args.results_dir):
os.mkdir(args.results_dir)
# Dump args
with open(args.results_dir + '/args.json', 'w') as fid:
json.dump(args.__dict__, fid, indent=2)
train_loss, train_accuracy = [], []
# Training loop
for epoch in range(1, args.epochs + 1):
print("==========================================================")
local_weights, local_losses = [], []
print(f'\n|Global Training Round : {epoch}|\n')
global_model.train()
m = max(int(args.frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
for idx in idxs_users:
train_data = get_pretraining_dataset(args, user_groups=user_groups, idx=idx)
local_model = copy.deepcopy(global_model)
# Define the optimizer
optimizer = torch.optim.Adam(local_model.parameters(), lr=args.lr, weight_decay=1e-6)
train_loader = DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
# num_workers=2,
pin_memory=True,
drop_last=True
)
print(f'--------Training process of client{idx}--------')
for e in range(1, args.local_epoch + 1):
loss, weights = local_train(local_model, train_loader, optimizer, e, args)
local_losses.append(copy.deepcopy(loss))
local_weights.append(copy.deepcopy(weights))
# update global weights
global_weights = aggregating(args, local_weights)
# update global weights
global_model.load_state_dict(global_weights)
loss_avg = sum(local_losses) / len(local_losses)
results['train_loss_avg_of_all_clients'].append(loss_avg)
train_loss.append(loss_avg)
print(f'Average loss of all clients:{loss_avg}')
# knn to monitor the global model
test_acc_1 = test(global_model.f, memory_loader, test_loader_clean, epoch, args)
results['test_acc@1_of_global_model'].append(test_acc_1)
# Save statistics
data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
data_frame.to_csv(args.results_dir + '/simclr_cifar10.csv', index_label='epoch')
if epoch % args.epochs == 0:
torch.save({'epoch': epoch, 'state_dict': global_model.state_dict(), 'optimizer': optimizer.state_dict()}, args.results_dir + '/cifar10_simclr' + str(epoch) + '.pth')