-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathsearch_space.py
134 lines (108 loc) · 3.89 KB
/
search_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Author: Simon Blanke
# Email: simon.blanke@yahoo.com
# License: MIT License
import numpy as np
class DictClass:
def __init__(self, search_space):
self.search_space = search_space
def __getitem__(self, key):
return self.search_space[key]
def keys(self):
return self.search_space.keys()
def values(self):
return self.search_space.values()
class SearchSpace(DictClass):
def __init__(self, search_space):
super().__init__(search_space)
self.search_space = search_space
self.dim_keys = list(search_space.keys())
self.values_l = list(self.search_space.values())
positions = {}
for key in search_space.keys():
positions[key] = np.array(range(len(search_space[key])))
self.positions = positions
self.check_list()
self.check_non_num_values()
self.data_types = self.dim_types()
self.func2str = self._create_num_str_ss()
def __call__(self):
return self.search_space
def dim_types(self):
data_types = {}
for dim_key in self.dim_keys:
dim_values = np.array(list(self.search_space[dim_key]))
try:
np.subtract(dim_values, dim_values)
np.array(dim_values).searchsorted(dim_values)
except:
_type_ = "object"
else:
_type_ = "number"
data_types[dim_key] = _type_
return data_types
def _create_num_str_ss(self):
func2str = {}
for dim_key in self.dim_keys:
if self.data_types[dim_key] == "number":
func2str[dim_key] = self.search_space[dim_key]
else:
func2str[dim_key] = []
dim_values = self.search_space[dim_key]
for value in dim_values:
try:
func_name = value.__name__
except:
func_name = value
func2str[dim_key].append(func_name)
return func2str
def check_list(self):
for dim_key in self.dim_keys:
search_dim = self.search_space[dim_key]
err_msg = "\n Value in '{}' of search space dictionary must be of type list \n".format(
dim_key
)
if not isinstance(search_dim, list):
raise ValueError(err_msg)
@staticmethod
def is_function(value):
try:
value.__name__
except:
return False
else:
return True
@staticmethod
def is_number(value):
try:
float(value)
value * 0.1
value - 0.1
value / 0.1
except:
return False
else:
return True
def _string_or_object(self, dim_key, dim_values):
for dim_value in dim_values:
is_str = isinstance(dim_value, str)
is_func = self.is_function(dim_value)
is_number = self.is_number(dim_value)
if not is_str and not is_func and not is_number:
msg = "\n The value '{}' of type '{}' in the search space dimension '{}' must be number, string or function \n".format(
dim_value, type(dim_value), dim_key
)
raise ValueError(msg)
def check_non_num_values(self):
for dim_key in self.dim_keys:
dim_values = np.array(list(self.search_space[dim_key]))
try:
np.subtract(dim_values, dim_values)
np.array(dim_values).searchsorted(dim_values)
except:
self._string_or_object(dim_key, dim_values)
else:
if dim_values.ndim != 1:
msg = "Array-like object in '{}' must be one dimensional".format(
dim_key
)
raise ValueError(msg)