forked from Multimodal-NER/RpBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
142 lines (110 loc) · 5 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import re
import csv
from pathlib import Path
from collections import Counter
from data.dataset import MyToken, MySentence, MyImage, MyPair, MyDataset, MyCorpus
import constants
# constants for preprocessing
SPECIAL_TOKENS = ['\ufe0f', '\u200d', '\u200b', '\x92']
IMGID_PREFIX = 'IMGID:'
URL_PREFIX = 'http://t.co/'
UNKNOWN_TOKEN = '[UNK]'
def normalize_text(text: str):
# remove the ending URL which is not part of the text
url_re = r' http[s]?://t.co/\w+$'
text = re.sub(url_re, '', text)
return text
def load_itr_corpus(path: str, split: int = 3576, normalize: bool = True):
path = Path(path)
path_to_images = path / 'images'
assert path.exists()
assert path_to_images.exists()
with open(path/'data.csv', encoding='utf-8') as csv_file:
csv_reader = csv.DictReader(csv_file, doublequote=False, escapechar='\\')
pairs = [MyPair(
sentence=MySentence(text=normalize_text(row['tweet']) if normalize else row['tweet']),
image=MyImage(f"T{row['tweet_id']}.jpg"),
label=int(row['image_adds'])
) for row in csv_reader]
train = MyDataset(pairs[:split], path_to_images)
test = MyDataset(pairs[split:], path_to_images)
return MyCorpus(train=train, test=test)
def load_ner_dataset(path_to_txt: Path, path_to_images: Path, load_image: bool = True) -> MyDataset:
tokens = []
image_id = None
pairs = []
with open(str(path_to_txt), encoding='utf-8') as txt_file:
for line in txt_file:
line = line.rstrip() # strip '\n'
if line.startswith(IMGID_PREFIX):
image_id = line[len(IMGID_PREFIX):]
elif line != '':
text, label = line.split('\t')
if text == '' or text.isspace() \
or text in SPECIAL_TOKENS \
or text.startswith(URL_PREFIX):
text = UNKNOWN_TOKEN
tokens.append(MyToken(text, constants.LABEL_TO_ID[label]))
else:
pairs.append(MyPair(MySentence(tokens), MyImage(f'{image_id}.jpg')))
tokens = []
pairs.append(MyPair(MySentence(tokens), MyImage(f'{image_id}.jpg')))
return MyDataset(pairs, path_to_images, load_image)
def load_ner_corpus(path: str, load_image: bool = True) -> MyCorpus:
path = Path(path)
path_to_train_file = path / 'train.txt'
path_to_dev_file = path / 'dev.txt'
path_to_test_file = path / 'test.txt'
path_to_images = path / 'images'
assert path_to_train_file.exists()
assert path_to_dev_file.exists()
assert path_to_test_file.exists()
assert path_to_images.exists()
train = load_ner_dataset(path_to_train_file, path_to_images, load_image)
dev = load_ner_dataset(path_to_dev_file, path_to_images, load_image)
test = load_ner_dataset(path_to_test_file, path_to_images, load_image)
return MyCorpus(train, dev, test)
def type_count(dataset: MyDataset) -> str:
tags = [token.label for pair in dataset for token in pair.sentence]
counter = Counter(tags)
num_total = len(dataset)
num_per = counter['B-PER']
num_loc = counter['B-LOC']
num_org = counter['B-ORG']
num_misc = counter['B-MISC']
return f'{num_total}\t{num_per}\t{num_loc}\t{num_org}\t{num_misc}'
def token_count(dataset: MyDataset) -> str:
lengths = [len(pair.sentence) for pair in dataset]
num_sentences = len(lengths)
num_tokens = sum(lengths)
return f'{num_sentences}\t{num_tokens}'
if __name__ == "__main__":
twitter2015 = load_ner_corpus('resources/datasets/twitter2015')
twitter2015_train_statistic = type_count(twitter2015.train)
twitter2015_dev_statistic = type_count(twitter2015.dev)
twitter2015_test_statistic = type_count(twitter2015.test)
assert twitter2015_train_statistic == '4000\t2217\t2091\t928\t940'
assert twitter2015_dev_statistic == '1000\t552\t522\t247\t225'
assert twitter2015_test_statistic == '3257\t1816\t1697\t839\t726'
print('-----------------------------------------------')
print('2015\tNUM\tPER\tLOC\tORG\tMISC')
print('-----------------------------------------------')
print('TRAIN\t' + twitter2015_train_statistic)
print('DEV\t' + twitter2015_dev_statistic)
print('TEST\t' + twitter2015_test_statistic)
print('-----------------------------------------------')
print()
twitter2017 = load_ner_corpus('resources/datasets/twitter2017')
twitter2017_train_statistic = token_count(twitter2017.train)
twitter2017_dev_statistic = token_count(twitter2017.dev)
twitter2017_test_statistic = token_count(twitter2017.test)
assert twitter2017_train_statistic == '4290\t68655'
assert twitter2017_dev_statistic == '1432\t22872'
assert twitter2017_test_statistic == '1459\t23051'
print('------------------------')
print('2017\tSENT.\tTOKEN')
print('------------------------')
print('TRAIN\t' + twitter2017_train_statistic)
print('DEV\t' + twitter2017_dev_statistic)
print('TEST\t' + twitter2017_test_statistic)
print('------------------------')