forked from Multimodal-NER/RpBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
55 lines (42 loc) · 1.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import random
import numpy as np
import torch
import constants
from tqdm import tqdm
from seqeval.metrics import classification_report, f1_score
from seqeval.scheme import IOB2
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
def train(loader, model, optimizer, task, weight=1.0):
losses = []
model.train()
for batch in tqdm(loader):
optimizer.zero_grad()
loss, _ = getattr(model, f'{task}_forward')(batch)
loss *= weight
loss.backward()
optimizer.step()
losses.append(loss.item())
return np.mean(losses)
def evaluate(model, loader):
true_labels = []
pred_labels = []
model.eval()
with torch.no_grad():
for batch in tqdm(loader):
_, pred = model.ner_forward(batch)
true_labels += [[constants.ID_TO_LABEL[token.label] for token in pair.sentence] for pair in batch]
pred_labels += pred
f1 = f1_score(true_labels, pred_labels, mode='strict', scheme=IOB2)
report = classification_report(true_labels, pred_labels, digits=4, mode='strict', scheme=IOB2)
return f1, report