forked from anantzoid/VQA-Keras-Visual-Question-Answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (53 loc) · 2.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from keras.models import model_from_json#load_model
from keras.callbacks import ModelCheckpoint
import os
import argparse
from models import *
from prepare_data import *
from constants import *
def get_model(dropout_rate, model_weights_filename):
print "Creating Model..."
metadata = get_metadata()
num_classes = len(metadata['ix_to_ans'].keys())
num_words = len(metadata['ix_to_word'].keys())
embedding_matrix = prepare_embeddings(num_words, embedding_dim, metadata)
model = vqa_model(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate, num_classes)
if os.path.exists(model_weights_filename):
print "Loading Weights..."
model.load_weights(model_weights_filename)
return model
def train(args):
dropout_rate = 0.5
train_X, train_y = read_data(args.data_limit)
model = get_model(dropout_rate, model_weights_filename)
checkpointer = ModelCheckpoint(filepath=ckpt_model_weights_filename,verbose=1)
model.fit(train_X, train_y, nb_epoch=args.epoch, batch_size=args.batch_size, callbacks=[checkpointer], shuffle="batch")
model.save_weights(model_weights_filename, overwrite=True)
def val():
val_X, val_y, multi_val_y = get_val_data()
model = get_model(0.0, model_weights_filename)
print "Evaluating Accuracy on validation set:"
metric_vals = model.evaluate(val_X, val_y)
print ""
for metric_name, metric_val in zip(model.metrics_names, metric_vals):
print metric_name, " is ", metric_val
# Comparing prediction against multiple choice answers
true_positive = 0
preds = model.predict(val_X)
pred_classes = [np.argmax(_) for _ in preds]
for i, _ in enumerate(pred_classes):
if _ in multi_val_y[i]:
true_positive += 1
print "true positive rate: ", np.float(true_positive)/len(pred_classes)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--type', type=str, default='train')
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--data_limit', type=int, default=215359, help='Number of data points to fed for training')
args = parser.parse_args()
if args.type == 'train':
train(args)
elif args.type == 'val':
val()