Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

python MI_Proposed_CNNs_Architecture.py 执行错误 #10

Open
pioneerRick opened this issue Mar 13, 2024 · 6 comments
Open

python MI_Proposed_CNNs_Architecture.py 执行错误 #10

pioneerRick opened this issue Mar 13, 2024 · 6 comments

Comments

@pioneerRick
Copy link

Traceback (most recent call last):
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1334, in _do_call
return fn(*args)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1319, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1407, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(128, 4), b.shape=(512, 4), m=128, n=512, k=4
[[{{node Train_Optimizer/gradients/Output_Layer/prediction/MatMul_grad/MatMul}} = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Train_Optimizer/gradients/Output_Layer/prediction/add_grad/tuple/control_dependency, Output_Layer/W_fc2/Variable/read)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "MI_Proposed_CNNs_Architecture.py", line 582, in
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.50})
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(128, 4), b.shape=(512, 4), m=128, n=512, k=4
[[node Train_Optimizer/gradients/Output_Layer/prediction/MatMul_grad/MatMul (defined at MI_Proposed_CNNs_Architecture.py:301) = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Train_Optimizer/gradients/Output_Layer/prediction/add_grad/tuple/control_dependency, Output_Layer/W_fc2/Variable/read)]]

Caused by op 'Train_Optimizer/gradients/Output_Layer/prediction/MatMul_grad/MatMul', defined at:
File "MI_Proposed_CNNs_Architecture.py", line 301, in
train_step = tf.train.AdamOptimizer(1e-5).minimize(loss)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py", line 400, in minimize
grad_loss=grad_loss)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py", line 519, in compute_gradients
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py", line 630, in gradients
gate_gradients, aggregation_method, stop_gradients)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py", line 814, in _GradientsHelper
lambda: grad_fn(op, *out_grads))
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py", line 408, in _MaybeCompile
return grad_fn() # Exit early
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py", line 814, in
lambda: grad_fn(op, *out_grads))
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/math_grad.py", line 1130, in _MatMulGrad
grad_a = gen_math_ops.mat_mul(grad, b, transpose_b=True)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 4560, in mat_mul
name=name)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3274, in create_op
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1770, in init
self._traceback = tf_stack.extract_stack()

...which was originally created as op 'Output_Layer/prediction/MatMul', defined at:
File "MI_Proposed_CNNs_Architecture.py", line 290, in
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2057, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 4560, in mat_mul
name=name)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3274, in create_op
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1770, in init
self._traceback = tf_stack.extract_stack()

InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(128, 4), b.shape=(512, 4), m=128, n=512, k=4
[[node Train_Optimizer/gradients/Output_Layer/prediction/MatMul_grad/MatMul (defined at MI_Proposed_CNNs_Architecture.py:301) = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Train_Optimizer/gradients/Output_Layer/prediction/add_grad/tuple/control_dependency, Output_Layer/W_fc2/Variable/read)]]

作者您好,我是一名大三的学生,最近正在复现您的论文寻找灵感。但是当我运行(Under Python 3.6 Environment) $ python MI_Proposed_CNNs_Architecture.py 时候遇到了以上错误,我查询了很多资料都没有结果,目前最大的可能性是tensorflow版本和cuda版本不匹配,但是我不确定这是否正确。

我的电脑配置如下:
NVIDIA-SMI 535.146.02 Driver Version: 535.146.02 CUDA Version: 12.2
NVIDIA GeForce RTX 4090 显存24G

conda 环境如下: 这个conda 环境是运行在 python 3.6.13 下

absl-py 0.15.0
astor 0.8.1
certifi 2021.5.30
coverage 5.5
Cython 0.29.24
dataclasses 0.8
et-xmlfile 1.1.0
gast 0.5.3
grpcio 1.36.1
h5py 2.10.0
importlib-metadata 4.8.1
Keras-Applications 1.0.8
Keras-Preprocessing 1.1.2
Markdown 3.3.4
mkl-fft 1.3.0
mkl-random 1.1.1
mkl-service 2.3.0
numpy 1.19.2
openpyxl 3.1.2
pandas 1.1.5
pip 20.0.2
protobuf 3.17.2
python-dateutil 2.9.0.post0
pytz 2024.1
scipy 1.5.2
setuptools 36.4.0
six 1.16.0
tensorboard 1.12.2
tensorflow 1.12.0
termcolor 1.1.0
typing-extensions 4.1.1
Werkzeug 2.0.3
wheel 0.37.1
xlrd 1.2.0
zipp 3.6.0

@pioneerRick
Copy link
Author

image
当我运行将batch_size 调整到 64以上的时候遇到是那个错误

@pioneerRick
Copy link
Author

但是当我将batch_size大小调整到16的时候我遇到的是一个关于显存不足的错误:
Traceback (most recent call last):
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1334, in _do_call
return fn(*args)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1319, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1407, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[134487,32,32,20] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node Convolutional_1/h_conv1/Conv2D}} = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Input/Reshape_Data/Reshape, Convolutional_1/W_conv1/Variable/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[{{node loss/Euclidean_Distance/Mean/_69}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_372_loss/Euclidean_Distance/Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "MI_Proposed_CNNs_Architecture.py", line 584, in
train_acc, train_loss = sess.run([Global_Average_Accuracy, loss], feed_dict={x: train_data, y: train_labels, keep_prob: 1.0})
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[134487,32,32,20] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Convolutional_1/h_conv1/Conv2D (defined at MI_Proposed_CNNs_Architecture.py:101) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Input/Reshape_Data/Reshape, Convolutional_1/W_conv1/Variable/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[{{node loss/Euclidean_Distance/Mean/_69}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_372_loss/Euclidean_Distance/Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

Caused by op 'Convolutional_1/h_conv1/Conv2D', defined at:
File "MI_Proposed_CNNs_Architecture.py", line 101, in
h_conv1 = tf.nn.conv2d(x_Reshape, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 957, in conv2d
data_format=data_format, dilations=dilations, name=name)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3274, in create_op
op_def=op_def)
File "/root/miniconda3/envs/oldMotor/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1770, in init
self._traceback = tf_stack.extract_stack()

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[134487,32,32,20] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node Convolutional_1/h_conv1/Conv2D (defined at MI_Proposed_CNNs_Architecture.py:101) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Input/Reshape_Data/Reshape, Convolutional_1/W_conv1/Variable/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[{{node loss/Euclidean_Distance/Mean/_69}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_372_loss/Euclidean_Distance/Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info

@pioneerRick
Copy link
Author

image
这或者也能成为您指导我的线索,由于我通过matlab仅仅生成了Excel .xlsx Files文件,所以我将您原本的 .csv 文件全部换成了.xlsx文件进行读取,但是我感觉这个无法构成我错误的原因,但如果这能启发您请给我回复

@pioneerRick
Copy link
Author

其实还有一个可能的错误,您使用的是windows环境,而我使用的unbuntu16.0.4 ,请问这个是否也可能是我错误的原因呢?

@pioneerRick
Copy link
Author

您好,在我更换了一个更大的显卡,Tesla V100-32GB
环境是cuda 12.2 ,python 3.6.3
tensorflow-gpu=1.13.1
解决了以上的两个错误,可以判断是因为显存大小的问题
但是当我解决了以上两个问题的时候我遇到了另外一个问题
bfd173ac3707252d5f0dd3feec73ade
我搜索到的结果的是输入的input太小,做卷积运算的时候input会越来越小,过于小会“无法卷”,报错。
目前的解决方案估计是更换神经网络每层的大小,请问这是否意味着一开始的层数和每层的输入和输出大小有误。

@rongmengmeng
Copy link

遇到的超过显存的问题可能是因为在源代码中,分别将整个训练集和测试集用于计算准确率和损失

train_acc, train_loss = sess.run([Global_Average_Accuracy, loss], feed_dict={x: train_data, y: train_labels, keep_prob: 1.0})

test_summary, test_acc, test_loss = sess.run([merged, Global_Average_Accuracy, loss], feed_dict={x: test_data, y: test_labels, keep_prob: 1.0})
如果分批次计算准确率和损失则不会报错。

# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants