Skip to content

Latest commit

 

History

History
139 lines (67 loc) · 3.49 KB

index.md

File metadata and controls

139 lines (67 loc) · 3.49 KB

Python workshop 2022

Organizer: Department of Chemistry and Biochemistry, University of South Carolina

Lecturers: Patrick Xian, Santosh Adhikari, Sourin Dey

Day 1 – August 3rd

Python basics, programming environment, software repositories

References

[1] How to Think Like a Computer Scientist (https://buildmedia.readthedocs.org/media/pdf/howtothink/latest/howtothink.pdf)

[2] Software carpentry Python fundamentals (https://swcarpentry.github.io/python-novice-inflammation/)

[3] Awesome Python (https://github.com/vinta/awesome-python)


Day 2 – August 4th

Data visualization and data wrangling with Python. Bring your own data, if possible!

References

[1] Python visualization (https://github.com/rougier/scientific-visualization-book)

[2] Matplotlib tutorial (https://matplotlib.org/stable/tutorials/index.html)

[3] Seaborn tutorial (https://seaborn.pydata.org/tutorial.html)


Day 3 – August 5th

Scientific Python software packages

Advanced programming in Python

References

[1] Scipy 1.0, Nature Methods (2020) https://www.nature.com/articles/s41592-019-0686-2

[2] Numpy, Nature (2020) https://www.nature.com/articles/s41586-020-2649-2

[3] Numpy tutorial (https://cs231n.github.io/python-numpy-tutorial/)

[4] A somewhat pedantic intro to OOP in Python (https://docs.microsoft.com/en-us/learn/modules/python-object-oriented-programming/)

[5] Advanced concepts for OOP in Python (https://www.pythontutorial.net/python-oop/)

[6] Python design patterns (https://python-patterns.guide/)


Day 4 – August 8th

Common machine learning frameworks in Python

References

[1] Scikit-learn official tutorials (https://scikit-learn.org/stable/tutorial/index.html)

[2] Andreas Mueller’s scikit-learn tutorial (https://amueller.github.io/sklearn_tutorial/)

[3] Pytorch tutorials (https://brsoff.github.io/tutorials/index.html)

[4] Awesome python machine learning (https://github.com/sorend/awesome-python-machine-learning)


Day 5 – August 9th

Python packages for molecules and materials, focus on basic data structures and functionalities.

Reference

[1] RDKit tutorials (https://github.com/rdkit/rdkit-tutorials/tree/master/notebooks)

[2] RDKit cookbook (https://www.rdkit.org/docs/Cookbook.html)

[3] Pymatgen tutorial videos (https://www.youtube.com/c/MaterialsProject/videos)

[4] ASE tutorials (https://databases.fysik.dtu.dk/ase/tutorials/tutorials.html)