-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathNOTICE.txt
30 lines (28 loc) · 1.55 KB
/
NOTICE.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF).
Copyright 2015-2019, 2021-2024 Rutherford Appleton Laboratory, UK (STFC)
Copyright 2015-2019, 2021-2024 University College London. UK (UCL)
Copyright 2017-2019, 2021 Physikalisch-Technische Bundesanstalt, Germany (PTB)
Copyright 2019, 2021-2024 National Physical Laboratory, UK (NPL)
Copyright 2024, KU Leuven, Belgium
Copyright 2019 University of Leeds, UK
This software product is developed for the Collaborative Computational
Project in Synergistic Reconstruction for Biomedical Imaging
(http://www.ccpsynerbi.ac.uk/) at RAL STFC (http://www.stfc.ac.uk), UCL (http://www.ucl.ac.uk/)
and other contributing institutions.
Main contributors:
- Kris Thielemans (this document, PET exercises, overall QA)
- Christoph Kolbitsch (MR exercises, Introductory notebooks)
- David Atkinson (MR exercises, geometry notebooks, overall QA)
- Evgueni Ovtchinnikov (PET and MR exercises)
- Johannes Mayer (MR exercises)
- Richard Brown (PET and registration exercises)
- Daniel Deidda and Palak Wadhwa (HKEM exercise)
- Imraj Singh (Deep Learning for PET exercise)
- Daniel Deidda and Sam Porter (Synergistic SPECT/PET Reconstruction Exercises)
- Imraj Singh (Deep Learning for PET)
- Daniel Deidda and Sam Porter (Synergistic SPECT/PET Reconstruction )
- Georg Schramm (Deep Learning with PET list-mode data)
- Margaret Duff and Sam Porter (synergistic deconvolution)
- Edoardo Pasca (overall check and clean-up)
- Ashley Gillman (overall check, scripts and clean-up)
- Nicole Jurjew (updating, answers and checks of PET exercises)