forked from ioanam25/robust-kg-completion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
196 lines (163 loc) · 7.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import argparse
import utils
import random
import numpy as np
import json
import typing
import os
from torch.utils.data import DataLoader
import sys
from tqdm import tqdm
from evaluation import ranking_and_hits
from CONSTANTS import DATA_DIR
import time
from functools import partial
import contextlib
from torch.utils.tensorboard import SummaryWriter
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def set_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def train(model, trainloader, optimizer, loss_fn, args, epoch):
model.train()
running_loss = 0.0
batches = tqdm(trainloader)
num_batches = len(trainloader)
for i, data in enumerate(batches):
inputs, labels = data[0].to('cuda', non_blocking=False), data[1].to(
'cuda', non_blocking=False)
if 'to_n' in args.strategy and 'mask' not in args.strategy:
labels = (1.0 - args.label_smoothing_epsilon)*labels + (args.label_smoothing_epsilon/args.num_entities)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = loss_fn(outputs, labels)
running_loss += loss.item()
loss.backward()
if args.clip != 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if i % 50 == 49:
batches.set_postfix(loss=running_loss / i)
return running_loss/(i+1)
def main(args: argparse.ArgumentParser, writer=None):
print('Setting seeds for reproducibility...')
set_seeds(args.seed)
train_dataset = utils.get_dataset('train', args)
trainloader = DataLoader(
train_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=True, num_workers=args.num_workers, drop_last=True)
eval_dataset = utils.get_dataset('valid', args)
eval_loader = DataLoader(
eval_dataset, batch_size=args.eval_batch_size, pin_memory=True, shuffle=False, num_workers=args.num_workers)
model = utils.get_model(args)
# Use GPU
if torch.cuda.is_available():
model.to('cuda')
else:
raise RuntimeError
# optimizer
optimizer = utils.get_optimizer(model, args)
# loss function
if 'softmax' in args.strategy:
loss_fn = torch.nn.CrossEntropyLoss()
else:
loss_fn = torch.nn.BCEWithLogitsLoss()
best_mrr = 0
epochs_since_improvement = 0
for epoch in range(args.num_epochs):
# print(f'Epoch {epoch}')
train_loss = train(model, trainloader, optimizer, loss_fn, args, epoch)
metrics = ranking_and_hits(
model, eval_loader, args)
mrr = metrics['MRR']
if writer:
writer.add_scalar('MRR/val', mrr, epoch)
writer.add_scalar('train/loss', train_loss, epoch)
if mrr < best_mrr:
epochs_since_improvement += 1
if epochs_since_improvement >= args.patience:
break
else:
epochs_since_improvement = 0
best_mrr = mrr
torch.save({'state_dict': model.state_dict(), 'epoch': epoch},
os.path.join(args.output_dir, 'state_dict.pt'))
with open(os.path.join(args.output_dir, 'metrics.json'), 'w') as f:
f.write(json.dumps(metrics))
print("Epoch {:04d} | Best MRR {:.5f} | Current MRR {:.5f} | H@1 {:.5f} | H@10 {:.5f} | Epochs Since Improvement {:04d}".
format(epoch, best_mrr, mrr, metrics['H@1'], metrics['H@10'], epochs_since_improvement))
print("Epoch {:04d} | Best MRR {:.5f} | Current MRR {:.5f} | H@1 {:.5f} | H@10 {:.5f} | Epochs Since Improvement {:04d}".
format(epoch, best_mrr, mrr, metrics['H@1'], metrics['H@10'], epochs_since_improvement))
if writer:
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Options for Knowledge Base Completion')
# General
parser.add_argument("--model", type=str, required=False, default='PretrainedBertResNet',
help="model to use")
parser.add_argument("--dataset", type=str, required=False, default='CN100K',
help="dataset to use")
parser.add_argument("--strategy", type=str, required=False, default='one_to_n',
help="training strategy")
parser.add_argument("--num_epochs", type=int, default=200,
help="number of maximum training epochs")
parser.add_argument("--patience", type=int, default=20,
help="patience for early stopping")
parser.add_argument("--save_dir", type=str, required=False, default="saved_models",
help="output directory to store metrics and model file")
parser.add_argument("--eval_batch_size", type=int, default=128,
help="batch size when evaluating")
parser.add_argument("--seed", type=int, default=42,
help="random seed value")
parser.add_argument("--num_workers", type=int, default=8,
help="number of threads")
# Model Hyperparameters
parser.add_argument("--lr", type=float, default=1e-3,
help="learning rate")
parser.add_argument("--dropout", type=float, default=0,
help="dropout probability")
parser.add_argument("--input_dropout", type=float, default=0,
help="input dropout")
parser.add_argument("--feature_map_dropout", type=float, default=0,
help="feature map dropout")
parser.add_argument("--label_smoothing_epsilon", type=float, default=0.1,
help="epsilon for label smoothing")
parser.add_argument("--weight_decay", type=float, default=0,
help="weight decay coefficient")
parser.add_argument("--clip", type=int, default=0,
help="value used for gradient clipping")
parser.add_argument("--embedding_dim", type=int, default=200,
help="embedding dimension for entities and relations")
parser.add_argument("--channels", type=int, default=200,
help="output dimension of convolution")
parser.add_argument("--batch_size", type=int, default=128,
help="batch size")
parser.add_argument("--reshape_len", type=int, default=4,
help="Side length for deep convolutional models")
parser.add_argument("--resnet_num_blocks", type=int, default=2,
help="Number of resnet blocks")
parser.add_argument("--resnet_block_depth", type=int, default=3,
help="Depth of each resnet block")
parser.add_argument("--args_dir", type=str, default='',
help="Whether to set hyperparameters from experiment")
args = parser.parse_args()
torch.set_num_threads(args.num_workers)
args.dataset_folder = DATA_DIR[args.dataset]
utils.set_kg_stats(args)
if args.args_dir != '':
utils.load_args(args)
try:
utils.set_model_dir(args)
writer = SummaryWriter(args.output_dir)
with open(os.path.join(args.output_dir, 'args.json'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
main(args, writer)
except KeyboardInterrupt:
os.rename(args.output_dir, +'terminated')
print('Interrupted')