-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvert_image_to_tensor_save.py
70 lines (59 loc) · 1.95 KB
/
convert_image_to_tensor_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import pickle
import os
from PIL import Image
from torchvision import transforms
import numpy as np
def load_file(filename):
with open(filename, 'rb') as filehandle:
ret = pickle.load(filehandle)
return ret
if __name__ == "__main__":
opt = {
'data_path':'input/prepared/',
'img_path':'dataset_image/'
}
id ={
"train":load_file(opt["data_path"] + "train_id"),
"test":load_file(opt["data_path"] + "test_id"),
"valid":load_file(opt["data_path"] + "valid_id")
}
img_dir=opt["img_path"]
transform_train = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_valid = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform = {
"train": transform_train,
"valid": transform_valid,
"test": transform_test
}
image_tensor = {
"train": [],
"valid": [],
"test": []
}
save_path = 'image_tensor/'
if not os.path.exists(save_path):
os.makedirs(save_path)
for mode in id.keys():
for idx in id[mode]:
img_path=os.path.join(
img_dir,
"{}.jpg".format(idx)
)
img = Image.open(img_path)
img = img.convert('RGB') # convert grey picture
trainsform_img = transform[mode](img)
image_tensor[mode].append(trainsform_img.unsqueeze(0))
np.save(save_path + str(idx) + '.npy', trainsform_img.numpy())