-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathobservation_extractor_os.py
403 lines (368 loc) · 16.1 KB
/
observation_extractor_os.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# coding=utf-8
# Copyright 2021 The Circuit Training Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This class extracts features from observations."""
from typing import Dict, Optional, Text, Tuple
from Plc_client import observation_config as observation_config_lib
from Plc_client import plc_client
import gin
import numpy as np
@gin.configurable
class ObservationExtractor(object):
"""Extracts observation features from plc."""
EPSILON = 1E-6
def __init__(self,
plc: plc_client.PlacementCost,
observation_config: Optional[
observation_config_lib.ObservationConfig] = None,
default_location_x: float = 0.5,
default_location_y: float = 0.5):
self.plc = plc
self._observation_config = (
observation_config or observation_config_lib.ObservationConfig())
self._default_location_x = default_location_x
self._default_location_y = default_location_y
self.width, self.height = self.plc.get_canvas_width_height()
self.num_cols, self.num_rows = self.plc.get_grid_num_columns_rows()
self.grid_width = self.width / self.num_cols
self.grid_height = self.height / self.num_rows
# Since there are too many I/O ports, we have to cluster them together to
# make it manageable for the model to process. The ports that are located in
# the same grid cell are clustered togheter.
self.adj_vec, grid_cell_of_clustered_ports_vec = self.plc.get_macro_and_clustered_port_adjacency(
)
self.clustered_port_locations_vec = [
self._get_clustered_port_locations(i)
for i in grid_cell_of_clustered_ports_vec
]
# Extract static features.
self._features = self._extract_static_features()
# done
def _extract_static_features(self) -> Dict[Text, np.ndarray]:
"""Static features that are invariant across training steps."""
features = dict()
self._extract_num_macros(features)
self._extract_technology_info(features)
self._extract_node_types(features)
self._extract_macro_size(features)
self._extract_macro_and_port_adj_matrix(features)
self._extract_canvas_size(features)
self._extract_grid_size(features)
self._extract_initial_node_locations(features)
self._extract_normalized_static_features(features)
return features
# done
def _extract_normalized_static_features(
self, features: Dict[Text, np.ndarray]) -> None:
"""Normalizes static features."""
self._add_netlist_metadata(features)
self._normalize_adj_matrix(features)
self._pad_adj_matrix(features)
self._pad_macro_static_features(features)
self._normalize_macro_size_by_canvas(features)
self._normalize_grid_size(features)
self._normalize_locations_by_canvas(features)
self._replace_unplace_node_location(features)
self._pad_macro_dynamic_features(features)
# done
def _extract_num_macros(self, features: Dict[Text, np.ndarray]) -> None:
features['num_macros'] = np.asarray([len(self.plc.get_macro_indices())
]).astype(np.int32)
# done
def _extract_technology_info(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts Technology-related information."""
routing_resources = {
'horizontal_routes_per_micron':
self.plc.get_routes_per_micron()[0],
'vertical_routes_per_micron':
self.plc.get_routes_per_micron()[1],
'macro_horizontal_routing_allocation':
self.plc.get_macro_routing_allocation()[0],
'macro_vertical_routing_allocation':
self.plc.get_macro_routing_allocation()[0],
}
for k in routing_resources:
features[k] = np.asarray([routing_resources[k]]).astype(np.float32)
# done
def _extract_initial_node_locations(self, features: Dict[Text,
np.ndarray]) -> None:
"""Extracts initial node locations."""
locations_x = []
locations_y = []
is_node_placed = []
for macro_idx in self.plc.get_macro_indices():
x, y = self.plc.get_node_location(macro_idx)
locations_x.append(x)
locations_y.append(y)
is_node_placed.append(1 if self.plc.is_node_placed(macro_idx) else 0)
for x, y in self.clustered_port_locations_vec:
locations_x.append(x)
locations_y.append(y)
is_node_placed.append(1)
features['locations_x'] = np.asarray(locations_x).astype(np.float32)
features['locations_y'] = np.asarray(locations_y).astype(np.float32)
features['is_node_placed'] = np.asarray(is_node_placed).astype(np.int32)
# done
def _extract_node_types(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts node types."""
types = []
for macro_idx in self.plc.get_macro_indices():
if self.plc.is_node_soft_macro(macro_idx):
types.append(observation_config_lib.SOFT_MACRO)
else:
types.append(observation_config_lib.HARD_MACRO)
for _ in range(len(self.clustered_port_locations_vec)):
types.append(observation_config_lib.PORT_CLUSTER)
features['node_types'] = np.asarray(types).astype(np.int32)
def _extract_macro_size(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts macro sizes."""
macros_w = []
macros_h = []
for macro_idx in self.plc.get_macro_indices():
if self.plc.is_node_soft_macro(macro_idx):
# Width and height of soft macros are set to zero.
width = 0
height = 0
else:
width, height = self.plc.get_node_width_height(macro_idx)
macros_w.append(width)
macros_h.append(height)
for _ in range(len(self.clustered_port_locations_vec)):
macros_w.append(0)
macros_h.append(0)
features['macros_w'] = np.asarray(macros_w).astype(np.float32)
features['macros_h'] = np.asarray(macros_h).astype(np.float32)
# done
def _extract_macro_and_port_adj_matrix(
self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts adjacency matrix."""
num_nodes = len(self.plc.get_macro_indices()) + len(
self.clustered_port_locations_vec)
assert num_nodes * num_nodes == len(self.adj_vec)
sparse_adj_i = []
sparse_adj_j = []
sparse_adj_weight = []
edge_counts = np.zeros((self._observation_config.max_num_nodes,),
dtype=np.int32) # issue with determine max_num_nodes
for i in range(num_nodes):
for j in range(i + 1, num_nodes):
weight = self.adj_vec[i + num_nodes * j]
if weight > 0:
sparse_adj_i.append(i)
sparse_adj_j.append(j)
sparse_adj_weight.append(weight)
edge_counts[i] += 1
edge_counts[j] += 1
features['sparse_adj_i'] = np.asarray(sparse_adj_i).astype(np.int32)
features['sparse_adj_j'] = np.asarray(sparse_adj_j).astype(np.int32)
features['sparse_adj_weight'] = np.asarray(sparse_adj_weight).astype(
np.float32)
features['edge_counts'] = edge_counts
# if not enough edges
# print("edge_counts ", np.sum(features['edge_counts'])) # 16624
# done
def _extract_canvas_size(self, features: Dict[Text, np.ndarray]) -> None:
features['canvas_width'] = np.asarray([self.width])
features['canvas_height'] = np.asarray([self.height])
# done
def _extract_grid_size(self, features: Dict[Text, np.ndarray]) -> None:
features['grid_cols'] = np.asarray([self.num_cols]).astype(np.float32)
features['grid_rows'] = np.asarray([self.num_rows]).astype(np.float32)
# done
def _get_clustered_port_locations(
self, grid_cell_index: int) -> Tuple[float, float]:
"""Returns clustered port locations.
This function returns an approximation location of the ports in a grid
cell. Depending on the cell location in the canvas, the approximation
differs.
Args:
grid_cell_index: The index of the grid cell where the cluster port is
located.
Returns:
A tuple of float: Approximate x, y location of the port cluster in the
grid cell in the same unit as canvas width and height (micron).
"""
col = grid_cell_index % self.num_cols
row = grid_cell_index // self.num_cols
if col == 0 and row == 0:
return 0, 0
elif col == 0 and row == self.num_rows - 1:
return 0, self.height
elif col == self.num_cols - 1 and row == 0:
return self.width, 0
elif col == self.num_cols - 1 and row == self.num_rows - 1:
return self.width, self.height
elif col == 0:
return 0, (row + 0.5) * self.grid_height
elif col == self.num_cols - 1:
return self.width, (row + 0.5) * self.grid_height
elif row == 0:
return (col + 0.5) * self.grid_width, 0
elif row == self.num_rows - 1:
return (col + 0.5) * self.grid_width, self.height
else:
return (col + 0.5) * self.grid_width, (row + 0.5) * self.grid_height
def _add_netlist_metadata(self, features: Dict[Text, np.ndarray]) -> None:
"""Adds netlist metadata info."""
features['normalized_num_edges'] = np.asarray([
np.sum(features['sparse_adj_weight']) /
self._observation_config.max_num_edges
]).astype(np.float32)
features['normalized_num_hard_macros'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.HARD_MACRO).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
features['normalized_num_soft_macros'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.SOFT_MACRO).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
features['normalized_num_port_clusters'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.PORT_CLUSTER).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
def _normalize_adj_matrix(self, features: Dict[Text, np.ndarray]) -> None:
"""Normalizes adj matrix weights."""
mean_weight = np.mean(features['sparse_adj_weight'])
features['sparse_adj_weight'] = (
features['sparse_adj_weight'] /
(mean_weight + ObservationExtractor.EPSILON)).astype(np.float32)
def _pad_1d_tensor(self, tensor: np.ndarray, pad_size: int) -> np.ndarray:
if (pad_size - tensor.shape[0]) < 0:
print("padding not applied", pad_size, tensor.shape[0])
return np.pad(
tensor, (0, 0),
mode='constant',
constant_values=0)
else:
return np.pad(
tensor, (0, pad_size - tensor.shape[0]),
mode='constant',
constant_values=0)
def _pad_adj_matrix(self, features: Dict[Text, np.ndarray]) -> None:
"""Pads indices and weights with zero to make their shape known."""
for var in ['sparse_adj_i', 'sparse_adj_j', 'sparse_adj_weight']:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_edges)
def _pad_macro_static_features(self, features: Dict[Text,
np.ndarray]) -> None:
"""Pads macro features to make their shape knwon."""
for var in [
'macros_w',
'macros_h',
'node_types',
]:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_nodes)
def _pad_macro_dynamic_features(self, features: Dict[Text,
np.ndarray]) -> None:
"""Pads macro features to make their shape knwon."""
for var in [
'locations_x',
'locations_y',
'is_node_placed',
]:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_nodes)
def _normalize_grid_size(self, features: Dict[Text, np.ndarray]) -> None:
features['grid_cols'] = (features['grid_cols'] /
self._observation_config.max_grid_size).astype(
np.float32)
features['grid_rows'] = (features['grid_rows'] /
self._observation_config.max_grid_size).astype(
np.float32)
def _normalize_macro_size_by_canvas(self, features: Dict[Text,
np.ndarray]) -> None:
"""Normalizes macro sizes with the canvas size."""
features['macros_w'] = (
features['macros_w'] /
(features['canvas_width'] + ObservationExtractor.EPSILON)).astype(
np.float32)
features['macros_h'] = (
features['macros_h'] /
(features['canvas_height'] + ObservationExtractor.EPSILON)).astype(
np.float32)
def _normalize_locations_by_canvas(self, features: Dict[Text,
np.ndarray]) -> None:
"""Normalizes locations with the canvas size."""
features['locations_x'] = (
features['locations_x'] /
(features['canvas_width'] + ObservationExtractor.EPSILON)).astype(
np.float32)
features['locations_y'] = (
features['locations_y'] /
(features['canvas_height'] + ObservationExtractor.EPSILON)).astype(
np.float32)
def _replace_unplace_node_location(self, features: Dict[Text,
np.ndarray]) -> None:
"""Replace the location of the unplaced macros with a constant."""
is_node_placed = np.equal(features['is_node_placed'], 1)
features['locations_x'] = np.where(
is_node_placed,
features['locations_x'],
self._default_location_x * np.ones_like(features['locations_x']),
).astype(np.float32)
features['locations_y'] = np.where(
is_node_placed,
features['locations_y'],
self._default_location_y * np.ones_like(features['locations_y']),
).astype(np.float32)
def get_static_features(self) -> Dict[Text, np.ndarray]:
return {
key: self._features[key]
for key in observation_config_lib.STATIC_OBSERVATIONS
}
def get_initial_features(self) -> Dict[Text, np.ndarray]:
return {
key: self._features[key]
for key in observation_config_lib.INITIAL_OBSERVATIONS
}
def _update_dynamic_features(self, previous_node_index: int,
current_node_index: int,
mask: np.ndarray) -> None:
"""Updates the dynamic features."""
if previous_node_index >= 0:
x, y = self.plc.get_node_location(
self.plc.get_macro_indices()[previous_node_index])
self._features['locations_x'][previous_node_index] = (
x / (self.width + ObservationExtractor.EPSILON))
self._features['locations_y'][previous_node_index] = (
y / (self.height + ObservationExtractor.EPSILON))
self._features['is_node_placed'][previous_node_index] = 1
self._features['mask'] = mask.astype(np.int32)
self._features['current_node'] = np.asarray([current_node_index
]).astype(np.int32)
def get_dynamic_features(self, previous_node_index: int,
current_node_index: int,
mask: np.ndarray) -> Dict[Text, np.ndarray]:
self._update_dynamic_features(previous_node_index, current_node_index, mask)
return {
key: self._features[key]
for key in observation_config_lib.DYNAMIC_OBSERVATIONS
if key in self._features
}
def get_all_features(self, previous_node_index: int, current_node_index: int,
mask: np.ndarray) -> Dict[Text, np.ndarray]:
features = self.get_static_features()
features.update(
self.get_dynamic_features(
previous_node_index=previous_node_index,
current_node_index=current_node_index,
mask=mask))
return features