forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_retro.py
161 lines (127 loc) · 5.24 KB
/
pretrain_retro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain Retro."""
from functools import partial
import torch
from megatron import get_args, get_retro_args
from megatron import get_timers
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.arguments import core_transformer_config_from_args
from megatron.core import tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDataset
from megatron.core.enums import ModelType
from megatron.core.models.retro import get_retro_decoder_block_spec, RetroModel
from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids
from tools.retro.query.retro_dataset import get_retro_datasets
from pretrain_gpt import loss_func, model_provider as default_model_provider
def core_model_provider(pre_process=True, post_process=True):
"""Build the model using Megatron-Core."""
args = get_args()
config = core_transformer_config_from_args(args)
# NOTE: Experimental customization feature
if args.spec is not None:
block_spec = import_module(args.spec)()
else:
block_spec = get_retro_decoder_block_spec(config, use_transformer_engine=True)
print_rank_0('building GPT model ...')
model = RetroModel(
config=config,
transformer_layer_spec=block_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent
)
return model
def model_provider(pre_process=True, post_process=True):
"""Build the model.
Select between two different model classes:
1. Default model (uses megatron/models/gpt_model.py).
2. Core model (uses megatron/core/models/retro/model.py).
"""
args = get_args()
provider = core_model_provider if args.use_mcore_models else default_model_provider
return provider(pre_process=pre_process, post_process=post_process)
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
retro_args = get_retro_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = ['text', 'neighbor_tokens']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# note: [bs * l * k, r]
# note: 2x == neighbor, continuation
neighbor_tokens = data_b['neighbor_tokens'] \
.view(-1, retro_args.retro_gpt_retrieved_length).long()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
_, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
neighbor_tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
neighbor_attention_mask = None
return tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator').start()
tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
get_batch(data_iterator)
timers('batch-generator').stop()
# Model call.
if args.use_mcore_models:
forward_kwargs = {
"context_input_ids" : neighbor_tokens,
"context_position_ids" : neighbor_position_ids,
"context_mask" : neighbor_attention_mask,
}
else:
forward_kwargs = {
"retriever_input_ids" : neighbor_tokens,
"retriever_position_ids" : neighbor_position_ids,
"retriever_attn_mask" : neighbor_attention_mask,
}
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels, **forward_kwargs)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
return get_retro_datasets()
if __name__ == "__main__":
# Temporary for transitiont to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.retro_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
'retro_add_retriever': True})