This repository has been archived by the owner on Dec 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathgenerate_csv_deepspeech.py
153 lines (125 loc) · 5.22 KB
/
generate_csv_deepspeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""Create CSV files for audio files formatted for DeepSpeech.
DeepSpeech format is:
| wav_filename | wav_filesize | transcript |
| ------------ | ---------------- | ---------- |
| ... | ... | ... |
"""
import argparse
import logging
import os
from pathlib import Path
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from typing import List, Tuple
from utils import files
from utils import quran_helper
DEEPSPEECH_FILENAME_HEADER = 'wav_filename'
DEEPSPEECH_FILESIZE_HEADER = 'wav_filesize'
DEEPSPEECH_TRANSCRIPT_HEADER = 'transcript'
DEEPSPEECH_CSV_HEADERS = [DEEPSPEECH_FILENAME_HEADER, DEEPSPEECH_FILESIZE_HEADER, DEEPSPEECH_TRANSCRIPT_HEADER]
DEEPSPEECH_CSV_FILENAME = 'tarteel_deepspeech_full.csv'
DEFAULT_RANDOM_SEED = 42
TRAIN_SPLIT_FRACTION = 0.6
TEST_SPLIT_FRACTION = 0.2
VALIDATION_SPLIT_FRACTION = 0.2
parser = argparse.ArgumentParser(description='Create CSV files formatted for Deepspeech.')
parser.add_argument(
'-i', '--audio-directory', type=str, required=True,
help='Path to directory with audio files.'
)
parser.add_argument(
'-o', '--output-directory', type=str,
help='Output directory for CSV and alphabet.txt.'
)
parser.add_argument(
'--filename', type=str, default=DEEPSPEECH_CSV_FILENAME,
help='Output CSV filename.'
)
parser.add_argument(
'--train-fraction', type=float, default=TRAIN_SPLIT_FRACTION
)
parser.add_argument(
'--test-fraction', type=float, default=TEST_SPLIT_FRACTION
)
parser.add_argument(
'--validate-fraction', type=float, default=VALIDATION_SPLIT_FRACTION
)
parser.add_argument(
'-s', '--seed', type=int, default=DEFAULT_RANDOM_SEED,
help='Random seed for the split'
)
parser.add_argument(
'--log', choices=['DEBUG', 'INFO', 'WARNING', 'CRITICAL'], default='INFO',
help='Logging level.'
)
args = parser.parse_args()
numeric_level = getattr(logging, args.log, None)
logging.basicConfig(level=numeric_level)
quran = quran_helper.Quran()
def check_args() -> Tuple[str, str]:
audio_directory = Path(args.audio_directory)
output_directory = Path(args.output_directory)
if not audio_directory.is_dir():
raise ValueError("Audio directory is not a valid directory.")
if not output_directory.is_dir():
raise ValueError("Output directory is not a valid directory.")
logging.info(
"Parameters:\nAudio Directory: {}\nOutput Directory: {}".format(
audio_directory, output_directory))
return audio_directory, output_directory
def get_surah_ayah_from_file(filename: str) -> Tuple[int, int]:
split_filename = filename.split('_')
surah_number = int(split_filename[0])
ayah_number = int(split_filename[1])
return surah_number, ayah_number
def create_csv_file(file_names: List) -> List:
csv_rows = [DEEPSPEECH_CSV_HEADERS]
for wav_filename in tqdm(file_names):
wav_filename = wav_filename.strip() # Remove trailing characters
file_path = Path(os.path.join(args.audio_directory, wav_filename))
file_size = files.get_file_size(file_path.as_posix())
if not file_size:
logging.warning('Could not get {} file size skipping...'.format(wav_filename))
continue
surah_number, ayah_number = get_surah_ayah_from_file(wav_filename)
text = quran.get_ayah_text(surah_number, ayah_number)
csv_row = [file_path.as_posix(), file_size, text]
csv_rows.append(csv_row)
return csv_rows
def sum_is_one(*num_args: float):
return sum(i for i in num_args) == 1.0
def create_train_test_validation_split(
train_fraction: float,
test_fraction: float,
validate_fraction: float,
data: List) -> Tuple[List, List, List]:
if not sum_is_one(train_fraction, test_fraction, validate_fraction):
raise ValueError("Split fractions do not sum to one!")
# Splitting will be done in two steps, so identify the proper fractions for them.
first_split_fraction = train_fraction + validate_fraction
second_split_fraction = 1.0 - (validate_fraction / first_split_fraction)
X_train_valid, X_test = train_test_split(
data, train_size=first_split_fraction, random_state=args.seed, shuffle=True)
X_train, X_valid = train_test_split(
X_train_valid, train_size=second_split_fraction, random_state=args.seed, shuffle=True)
return X_train, X_test, X_valid
def main():
audio_directory, output_directory = check_args() # Throws if invalid args
file_names = files.get_all_files_in_directory(audio_directory)
csv_rows = create_csv_file(file_names)
csv_file_path = os.path.join(output_directory, args.filename)
files.write_csv(csv_file_path, csv_rows)
file_name_tuple = (
os.path.join(output_directory, 'train.csv'),
os.path.join(output_directory, 'dev.csv'),
os.path.join(output_directory, 'test.csv')
)
csv_rows.pop(0)
split_tuple = create_train_test_validation_split(
args.train_fraction, args.test_fraction, args.validate_fraction, csv_rows)
for i, split in enumerate(split_tuple):
split.insert(0, DEEPSPEECH_CSV_HEADERS) # Put the header back
files.write_csv(file_name_tuple[i], split)
logging.info("Saved {}".format(file_name_tuple[i]))
if __name__ == '__main__':
main()