-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
executable file
·122 lines (105 loc) · 4.09 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import copy
import json
import torch
import pytorch_lightning as pl
from flm.modules import FLMTransformerSS
from flm.datamodules.multitask_datamodule import MTDataModule
from flm.config import ex
def args_checker(config):
if config['enable_flm_aux_lm_loss']:
assert config['loss_names']['flm'] > 0
assert config['flm_backbone']
assert config['is_causal_mask']
assert config["hidden_size"] == config["hidden_size_for_fusion"], \
"only support hidden_size_for_fusion=hidden_size"
@ex.automain
def run(_config):
config = copy.deepcopy(_config)
args_checker(config)
# print(os.environ)
world_size = int(os.environ.get('WORLD_SIZE', 1))
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
nnodes = int(os.environ.get('NNODES', 1))
config["world_size"] = world_size
config["rank"] = rank
config["nnodes"] = nnodes
config["num_nodes"] = nnodes
config["local_rank"] = local_rank
device = torch.device(f'cuda:{local_rank}')
torch.cuda.set_device(device)
pl.seed_everything(config["seed"])
dm = MTDataModule(config, dist=True)
exp_name = f'{config["exp_name"]}'
os.makedirs(config["log_dir"], exist_ok=True)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=None, # use logger's path
save_top_k=config["ckpt_save_top_k"],
verbose=True,
monitor="val/the_metric",
mode="max",
save_last=True,
filename='epoch_{epoch:0>3d}-step_{step:0>6d}-val_score_{val/the_metric:.3f}',
auto_insert_metric_name=False,
)
version = 0 if config['fix_exp_version'] else None
logger = pl.loggers.TensorBoardLogger(
config["log_dir"],
name=f'{exp_name}_seed{config["seed"]}_from_{config["load_path"].split("/")[-1][:-5]}',
version=version,
)
config['exp_path'] = logger.root_dir
lr_callback = pl.callbacks.LearningRateMonitor(logging_interval="step")
callbacks = [checkpoint_callback, lr_callback]
num_gpus = (
config["num_gpus"]
if isinstance(config["num_gpus"], int)
else len(config["num_gpus"])
)
print(config)
available_batch_size = config["per_gpu_batchsize"] * \
num_gpus * config["num_nodes"]
grad_steps = max(config["batch_size"] // (available_batch_size), 1)
max_steps = config["max_steps"] if config["max_steps"] is not None else None
if local_rank == 0:
# print(os.environ)
print(
f' Node Num: {num_gpus}, Total GPU Numbers: {num_gpus * config["num_nodes"]}')
print(
f' Total Batch Size: {config["batch_size"]}, \
Available Batch Size: {available_batch_size}, \
Per GPU Batch Size: {config["per_gpu_batchsize"]},\
Grad Steps: {grad_steps}')
print(f' Resume_from: {config["resume_from"]}')
print(f' Load_path: {config["load_path"]}')
print(' All configs: \n', json.dumps(
_config, sort_keys=True, indent=4, separators=(',', ':')))
model = FLMTransformerSS(config)
trainer = pl.Trainer(
gpus=config["num_gpus"],
num_nodes=config["num_nodes"],
precision=config["precision"],
accelerator="ddp",
benchmark=True,
deterministic=True,
max_epochs=config["max_epoch"] if max_steps is None else 1000,
max_steps=max_steps,
callbacks=callbacks,
logger=logger,
prepare_data_per_node=config["prepare_data_per_node"],
replace_sampler_ddp=False,
accumulate_grad_batches=grad_steps,
log_every_n_steps=100,
flush_logs_every_n_steps=100,
resume_from_checkpoint=config["resume_from"],
weights_summary="top",
fast_dev_run=config["fast_dev_run"],
val_check_interval=config["val_check_interval"],
# progress_bar_refresh_rate= 5 if config['debug'] else 200,
num_sanity_val_steps=config['num_sanity_val_steps'],
)
if not config["test_only"]:
trainer.fit(model, datamodule=dm)
else:
trainer.test(model, datamodule=dm)