-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
178 lines (153 loc) · 7.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import pandas as pd
from models import *
from tqdm import tqdm
tqdm.pandas()
from torch import nn
import json
import numpy as np
import pickle
import os
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
from transformers import *
import torch
import matplotlib.pyplot as plt
import torch.utils.data
import torch.nn.functional as F
import argparse
from transformers.modeling_utils import *
from fairseq.data.encoders.fastbpe import fastBPE
from fairseq.data import Dictionary
from vncorenlp import VnCoreNLP
from utils import *
from Clean import *
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--train_path', type=str, default='./data/train.csv')
parser.add_argument('--dict_path', type=str, default="./phobert/dict.txt")
parser.add_argument('--config_path', type=str, default="./phobert/config.json")
parser.add_argument('--rdrsegmenter_path', type=str, required=True)
parser.add_argument('--pretrained_path', type=str, default='./phobert/model.bin')
parser.add_argument('--max_sequence_length', type=int, default=250)
parser.add_argument('--batch_size', type=int, default=24)
parser.add_argument('--accumulation_steps', type=int, default=5)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--fold', type=int, default=0)
parser.add_argument('--seed', type=int, default=69)
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--ckpt_path', type=str, default='./models')
parser.add_argument('--bpe-codes', default="./phobert/bpe.codes",type=str, help='path to fastBPE BPE')
args = parser.parse_args()
bpe = fastBPE(args)
rdrsegmenter = VnCoreNLP(args.rdrsegmenter_path, annotators="wseg", max_heap_size='-Xmx500m')
seed_everything(69)
# Load model
config = RobertaConfig.from_pretrained(
args.config_path,
output_hidden_states=True,
num_labels=1
)
model_bert = RobertaForAIViVN.from_pretrained(args.pretrained_path, config=config)
model_bert.cuda()
if torch.cuda.device_count():
print(f"Training using {torch.cuda.device_count()} gpus")
model_bert = nn.DataParallel(model_bert)
tsfm = model_bert.module.roberta
else:
tsfm = model_bert.roberta
# Load the dictionary
vocab = Dictionary()
vocab.add_from_file("/content/drive/MyDrive/Colab_Notebooks/Phobert/PhoBert-Sentiment-Classification/PhoBERT_base_transformers/dict.txt")
# Load training data
data_set = pd.read_csv(args.train_path)
train_df = pd.DataFrame({'label':data_set['Rating'],'text':data_set['Comment']})
train_df = train_df.dropna()
train_df = train_df.reset_index(drop=True)
train_df = add_data(train_df)
train_df['text'] = clean_text_test(train_df['text'])
y = train_df.label.values
train_df['text'] = train_df['text'].progress_apply(lambda x: ' '.join([' '.join(sent) for sent in rdrsegmenter.tokenize(x)]))
X_train = convert_lines(train_df, vocab, bpe,args.max_sequence_length)
print("shape X", np.shape(X_train))
# X_train, y = clean_text(X_train, y)
# Creating optimizer and lr schedulers
param_optimizer = list(model_bert.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = int(args.epochs*len(train_df)/args.batch_size/args.accumulation_steps)
print("num_train ", num_train_optimization_steps)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=100, num_training_steps=num_train_optimization_steps) # PyTorch scheduler
scheduler0 = get_constant_schedule(optimizer) # PyTorch scheduler
if not os.path.exists(args.ckpt_path):
os.mkdir(args.ckpt_path)
splits = list(StratifiedKFold(n_splits=5, shuffle=True, random_state=123).split(X_train, y))
for fold, (train_idx, val_idx) in enumerate(splits):
print("Training for fold {}".format(fold))
best_score = 0
if fold != args.fold:
continue
train_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train[train_idx],dtype=torch.long), torch.tensor(y[train_idx],dtype=torch.long))
valid_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train[val_idx],dtype=torch.long), torch.tensor(y[val_idx],dtype=torch.long))
print("shape train_dataset", np.shape(train_dataset))
print("shape valid_dataset", np.shape(valid_dataset))
losss = open('loss.txt','w')
tq = tqdm(range(args.epochs + 1))
for child in tsfm.children():
for param in child.parameters():
if not param.requires_grad:
print("whoopsies")
param.requires_grad = False
frozen = True
for epoch in tq:
if epoch > 0 and frozen:
for child in tsfm.children():
for param in child.parameters():
param.requires_grad = True
frozen = False
del scheduler0
torch.cuda.empty_cache()
val_preds = None
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False)
avg_loss = 0.
avg_accuracy = 0.
optimizer.zero_grad()
pbar = tqdm(enumerate(train_loader),total=len(train_loader),leave=False)
for i,(x_batch, y_batch) in pbar:
model_bert.train()
y_pred = model_bert(x_batch.cuda(), attention_mask=(x_batch>0).cuda())
loss = F.binary_cross_entropy_with_logits(y_pred.view(-1).cuda(),y_batch.float().cuda())
loss = loss.mean()
loss.backward()
if i % args.accumulation_steps == 0 or i == len(pbar) - 1:
optimizer.step()
optimizer.zero_grad()
if not frozen:
scheduler.step()
else:
scheduler0.step()
lossf = loss.item()
losss.writelines(format(lossf))
losss.writelines("\n")
pbar.set_postfix(loss = lossf)
avg_loss += loss.item() / len(train_loader)
model_bert.eval()
pbar = tqdm(enumerate(valid_loader),total=len(valid_loader),leave=False)
for i,(x_batch, y_batch) in pbar:
y_pred = model_bert(x_batch.cuda(), attention_mask=(x_batch>0).cuda())
y_pred = y_pred.squeeze().detach().cpu().numpy()
val_preds = np.atleast_1d(y_pred) if val_preds is None else np.concatenate([val_preds, np.atleast_1d(y_pred)])
val_preds = sigmoid(val_preds)
best_th = 0
score = f1_score(y[val_idx], val_preds > 0.6)
print(f"\nAUC = {roc_auc_score(y[val_idx], val_preds):.4f}, F1 score @0.5 = {score:.4f}")
losss.writelines("AUC: {} F1 score: {}".format(np.round(roc_auc_score(y[val_idx], val_preds),4),np.round(score,4)))
losss.writelines("\n \n \n")
if score >= best_score:
torch.save(model_bert.state_dict(),os.path.join(args.ckpt_path, f"model_{fold}.bin"))
best_score = score
losss.close()