-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathnumber_of_positive_divisors.cpp
92 lines (85 loc) · 3.16 KB
/
number_of_positive_divisors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/**
* @file
* @brief C++ Program to calculate the number of positive divisors
*
* This algorithm uses the prime factorization approach.
* Any positive integer can be written as a product of its prime factors.
* <br/>Let \f$N = p_1^{e_1} \times p_2^{e_2} \times\cdots\times p_k^{e_k}\f$
* where \f$p_1,\, p_2,\, \dots,\, p_k\f$ are distinct prime factors of \f$N\f$ and
* \f$e_1,\, e_2,\, \dots,\, e_k\f$ are respective positive integer exponents.
* <br/>Each positive divisor of \f$N\f$ is in the form
* \f$p_1^{g_1}\times p_2^{g_2}\times\cdots\times p_k^{g_k}\f$
* where \f$0\le g_i\le e_i\f$ are integers for all \f$1\le i\le k\f$.
* <br/>Finally, there are \f$(e_1+1) \times (e_2+1)\times\cdots\times (e_k+1)\f$
* positive divisors of \f$N\f$ since we can choose every \f$g_i\f$
* independently.
*
* Example:
* <br/>\f$N = 36 = (3^2 \cdot 2^2)\f$
* <br/>\f$\mbox{number_of_positive_divisors}(36) = (2+1) \cdot (2+1) = 9\f$.
* <br/>list of positive divisors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36.
*
* Similarly, for N = -36 the number of positive divisors remain same.
**/
#include <cassert>
#include <iostream>
/**
* Function to compute the number of positive divisors.
* @param n number to compute divisors for
* @returns number of positive divisors of n (or 1 if n = 0)
*/
int number_of_positive_divisors(int n) {
if (n < 0) {
n = -n; // take the absolute value of n
}
int number_of_divisors = 1;
for (int i = 2; i * i <= n; i++) {
// This part is doing the prime factorization.
// Note that we cannot find a composite divisor of n unless we would
// already previously find the corresponding prime divisor and dvided
// n by that prime. Therefore, all the divisors found here will
// actually be primes.
// The loop terminates early when it is left with a number n which
// does not have a divisor smaller or equal to sqrt(n) - that means
// the remaining number is a prime itself.
int prime_exponent = 0;
while (n % i == 0) {
// Repeatedly divide n by the prime divisor n to compute
// the exponent (e_i in the algorithm description).
prime_exponent++;
n /= i;
}
number_of_divisors *= prime_exponent + 1;
}
if (n > 1) {
// In case the remaining number n is a prime number itself
// (essentially p_k^1) the final answer is also multiplied by (e_k+1).
number_of_divisors *= 2;
}
return number_of_divisors;
}
/**
* Test implementations
*/
void tests() {
assert(number_of_positive_divisors(36) == 9);
assert(number_of_positive_divisors(-36) == 9);
assert(number_of_positive_divisors(1) == 1);
assert(number_of_positive_divisors(2011) == 2); // 2011 is a prime
assert(number_of_positive_divisors(756) == 24); // 756 = 2^2 * 3^3 * 7
}
/**
* Main function
*/
int main() {
tests();
int n;
std::cin >> n;
if (n == 0) {
std::cout << "All non-zero numbers are divisors of 0 !" << std::endl;
} else {
std::cout << "Number of positive divisors is : ";
std::cout << number_of_positive_divisors(n) << std::endl;
}
return 0;
}