-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathadaline_learning.cpp
378 lines (317 loc) · 12.7 KB
/
adaline_learning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/**
* \addtogroup machine_learning Machine Learning Algorithms
* @{
* \file
* \brief [Adaptive Linear Neuron
* (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation
*
* \author [Krishna Vedala](https://github.com/kvedala)
*
* \details
* <a href="https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif"><img
* src="https://upload.wikimedia.org/wikipedia/commons/b/be/Adaline_flow_chart.gif"
* alt="Structure of an ADALINE network. Source: Wikipedia"
* style="width:200px; float:right;"></a>
*
* ADALINE is one of the first and simplest single layer artificial neural
* network. The algorithm essentially implements a linear function
* \f[ f\left(x_0,x_1,x_2,\ldots\right) =
* \sum_j x_jw_j+\theta
* \f]
* where \f$x_j\f$ are the input features of a sample, \f$w_j\f$ are the
* coefficients of the linear function and \f$\theta\f$ is a constant. If we
* know the \f$w_j\f$, then for any given set of features, \f$y\f$ can be
* computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein
* a set of features and their corresponding outputs are given and weights are
* computed using stochastic gradient descent method.
*/
#include <array>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <numeric>
#include <vector>
/** Maximum number of iterations to learn */
constexpr int MAX_ITER = 500; // INT_MAX
/** \namespace machine_learning
* \brief Machine learning algorithms
*/
namespace machine_learning {
class adaline {
public:
/**
* Default constructor
* \param[in] num_features number of features present
* \param[in] eta learning rate (optional, default=0.1)
* \param[in] convergence accuracy (optional,
* default=\f$1\times10^{-5}\f$)
*/
explicit adaline(int num_features, const double eta = 0.01f,
const double accuracy = 1e-5)
: eta(eta), accuracy(accuracy) {
if (eta <= 0) {
std::cerr << "learning rate should be positive and nonzero"
<< std::endl;
std::exit(EXIT_FAILURE);
}
weights = std::vector<double>(
num_features +
1); // additional weight is for the constant bias term
// initialize with random weights in the range [-50, 49]
for (double &weight : weights) weight = 1.f;
// weights[i] = (static_cast<double>(std::rand() % 100) - 50);
}
/**
* Operator to print the weights of the model
*/
friend std::ostream &operator<<(std::ostream &out, const adaline &ada) {
out << "<";
for (int i = 0; i < ada.weights.size(); i++) {
out << ada.weights[i];
if (i < ada.weights.size() - 1) {
out << ", ";
}
}
out << ">";
return out;
}
/**
* predict the output of the model for given set of features
* \param[in] x input vector
* \param[out] out optional argument to return neuron output before
* applying activation function (optional, `nullptr` to ignore) \returns
* model prediction output
*/
int predict(const std::vector<double> &x, double *out = nullptr) {
if (!check_size_match(x)) {
return 0;
}
double y = weights.back(); // assign bias value
// for (int i = 0; i < x.size(); i++) y += x[i] * weights[i];
y = std::inner_product(x.begin(), x.end(), weights.begin(), y);
if (out != nullptr) { // if out variable is provided
*out = y;
}
return activation(y); // quantizer: apply ADALINE threshold function
}
/**
* Update the weights of the model using supervised learning for one
* feature vector
* \param[in] x feature vector
* \param[in] y known output value
* \returns correction factor
*/
double fit(const std::vector<double> &x, const int &y) {
if (!check_size_match(x)) {
return 0;
}
/* output of the model with current weights */
int p = predict(x);
int prediction_error = y - p; // error in estimation
double correction_factor = eta * prediction_error;
/* update each weight, the last weight is the bias term */
for (int i = 0; i < x.size(); i++) {
weights[i] += correction_factor * x[i];
}
weights[x.size()] += correction_factor; // update bias
return correction_factor;
}
/**
* Update the weights of the model using supervised learning for an
* array of vectors.
* \param[in] X array of feature vector
* \param[in] y known output value for each feature vector
*/
template <size_t N>
void fit(std::array<std::vector<double>, N> const &X,
std::array<int, N> const &Y) {
double avg_pred_error = 1.f;
int iter = 0;
for (iter = 0; (iter < MAX_ITER) && (avg_pred_error > accuracy);
iter++) {
avg_pred_error = 0.f;
// perform fit for each sample
for (int i = 0; i < N; i++) {
double err = fit(X[i], Y[i]);
avg_pred_error += std::abs(err);
}
avg_pred_error /= N;
// Print updates every 200th iteration
// if (iter % 100 == 0)
std::cout << "\tIter " << iter << ": Training weights: " << *this
<< "\tAvg error: " << avg_pred_error << std::endl;
}
if (iter < MAX_ITER) {
std::cout << "Converged after " << iter << " iterations."
<< std::endl;
} else {
std::cout << "Did not converge after " << iter << " iterations."
<< std::endl;
}
}
/** Defines activation function as Heaviside's step function.
* \f[
* f(x) = \begin{cases}
* -1 & \forall x \le 0\\
* 1 & \forall x > 0
* \end{cases}
* \f]
* @param x input value to apply activation on
* @return activation output
*/
int activation(double x) { return x > 0 ? 1 : -1; }
private:
/**
* convenient function to check if input feature vector size matches the
* model weights size
* \param[in] x fecture vector to check
* \returns `true` size matches
* \returns `false` size does not match
*/
bool check_size_match(const std::vector<double> &x) {
if (x.size() != (weights.size() - 1)) {
std::cerr << __func__ << ": "
<< "Number of features in x does not match the feature "
"dimension in model!"
<< std::endl;
return false;
}
return true;
}
const double eta; ///< learning rate of the algorithm
const double accuracy; ///< model fit convergence accuracy
std::vector<double> weights; ///< weights of the neural network
};
} // namespace machine_learning
using machine_learning::adaline;
/** @} */
/**
* test function to predict points in a 2D coordinate system above the line
* \f$x=y\f$ as +1 and others as -1.
* Note that each point is defined by 2 values or 2 features.
* \param[in] eta learning rate (optional, default=0.01)
*/
void test1(double eta = 0.01) {
adaline ada(2, eta); // 2 features
const int N = 10; // number of sample points
std::array<std::vector<double>, N> X = {
std::vector<double>({0, 1}), std::vector<double>({1, -2}),
std::vector<double>({2, 3}), std::vector<double>({3, -1}),
std::vector<double>({4, 1}), std::vector<double>({6, -5}),
std::vector<double>({-7, -3}), std::vector<double>({-8, 5}),
std::vector<double>({-9, 2}), std::vector<double>({-10, -15})};
std::array<int, N> y = {1, -1, 1, -1, -1,
-1, 1, 1, 1, -1}; // corresponding y-values
std::cout << "------- Test 1 -------" << std::endl;
std::cout << "Model before fit: " << ada << std::endl;
ada.fit<N>(X, y);
std::cout << "Model after fit: " << ada << std::endl;
int predict = ada.predict({5, -3});
std::cout << "Predict for x=(5,-3): " << predict;
assert(predict == -1);
std::cout << " ...passed" << std::endl;
predict = ada.predict({5, 8});
std::cout << "Predict for x=(5,8): " << predict;
assert(predict == 1);
std::cout << " ...passed" << std::endl;
}
/**
* test function to predict points in a 2D coordinate system above the line
* \f$x+3y=-1\f$ as +1 and others as -1.
* Note that each point is defined by 2 values or 2 features.
* The function will create random sample points for training and test purposes.
* \param[in] eta learning rate (optional, default=0.01)
*/
void test2(double eta = 0.01) {
adaline ada(2, eta); // 2 features
const int N = 50; // number of sample points
std::array<std::vector<double>, N> X;
std::array<int, N> Y{}; // corresponding y-values
// generate sample points in the interval
// [-range2/100 , (range2-1)/100]
int range = 500; // sample points full-range
int range2 = range >> 1; // sample points half-range
for (int i = 0; i < N; i++) {
double x0 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x1 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
X[i] = std::vector<double>({x0, x1});
Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1;
}
std::cout << "------- Test 2 -------" << std::endl;
std::cout << "Model before fit: " << ada << std::endl;
ada.fit(X, Y);
std::cout << "Model after fit: " << ada << std::endl;
int N_test_cases = 5;
for (int i = 0; i < N_test_cases; i++) {
double x0 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x1 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
int predict = ada.predict({x0, x1});
std::cout << "Predict for x=(" << x0 << "," << x1 << "): " << predict;
int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1;
assert(predict == expected_val);
std::cout << " ...passed" << std::endl;
}
}
/**
* test function to predict points in a 3D coordinate system lying within the
* sphere of radius 1 and centre at origin as +1 and others as -1. Note that
* each point is defined by 3 values but we use 6 features. The function will
* create random sample points for training and test purposes.
* The sphere centred at origin and radius 1 is defined as:
* \f$x^2+y^2+z^2=r^2=1\f$ and if the \f$r^2<1\f$, point lies within the sphere
* else, outside.
*
* \param[in] eta learning rate (optional, default=0.01)
*/
void test3(double eta = 0.01) {
adaline ada(6, eta); // 2 features
const int N = 100; // number of sample points
std::array<std::vector<double>, N> X;
std::array<int, N> Y{}; // corresponding y-values
// generate sample points in the interval
// [-range2/100 , (range2-1)/100]
int range = 200; // sample points full-range
int range2 = range >> 1; // sample points half-range
for (int i = 0; i < N; i++) {
double x0 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x1 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x2 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
X[i] = std::vector<double>({x0, x1, x2, x0 * x0, x1 * x1, x2 * x2});
Y[i] = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
}
std::cout << "------- Test 3 -------" << std::endl;
std::cout << "Model before fit: " << ada << std::endl;
ada.fit(X, Y);
std::cout << "Model after fit: " << ada << std::endl;
int N_test_cases = 5;
for (int i = 0; i < N_test_cases; i++) {
double x0 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x1 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
double x2 = (static_cast<double>(std::rand() % range) - range2) / 100.f;
int predict = ada.predict({x0, x1, x2, x0 * x0, x1 * x1, x2 * x2});
std::cout << "Predict for x=(" << x0 << "," << x1 << "," << x2
<< "): " << predict;
int expected_val = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
assert(predict == expected_val);
std::cout << " ...passed" << std::endl;
}
}
/** Main function */
int main(int argc, char **argv) {
std::srand(std::time(nullptr)); // initialize random number generator
double eta = 0.1; // default value of eta
if (argc == 2) { // read eta value from commandline argument if present
eta = strtof(argv[1], nullptr);
}
test1(eta);
std::cout << "Press ENTER to continue..." << std::endl;
std::cin.get();
test2(eta);
std::cout << "Press ENTER to continue..." << std::endl;
std::cin.get();
test3(eta);
return 0;
}