-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtasks.py
339 lines (323 loc) · 10.9 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Celery tasks exposed by the :mod:`pylabber.accounts` app.
"""
import math
from pathlib import Path
from typing import Iterable, List, Union
from celery import group, shared_task
from django.conf import settings
from django_analyses.models.run import Run
from django_mri.models import Scan, Session
from paramiko.ssh_exception import SSHException
from research.models.subject import Subject
from accounts.models.export_destination import ExportDestination
RUN_EXPORT_MUTATIONS = getattr(settings, "EXPORT_MUTATORS", {})
@shared_task(
name="accounts.export-files",
autoretry_for=(OSError, SSHException),
retry_backoff=True,
)
def export_files(
export_destination_id: int,
files: List[str],
destinations: List[str] = None,
):
host = ExportDestination.objects.get(id=export_destination_id)
host.put(files, destinations)
@shared_task(name="accounts.export-run-results")
def export_run(export_destination_id: int, run_id: int, max_parallel: int = 3):
# Split in case of multiple runs.
if isinstance(run_id, Iterable):
try:
n_chunks = math.ceil(len(run_id) / max_parallel)
except ZeroDivisionError:
# If `max_parallel` is set to 0, run all in parallel.
signatures = [
export_run.s(export_destination_id, pk) for pk in run_id
]
group(signatures)()
else:
# Create the inputs for each separate execution and run in chunks.
inputs = ((export_destination_id, pk) for pk in run_id)
chunks = export_run.chunks(inputs, n_chunks)
chunks.group().skew()()
finally:
return
# Split in case of multiple export destinations.
if isinstance(export_destination_id, Iterable):
signatures = [export_run.s(pk, run_id) for pk in export_destination_id]
group(signatures)()
return
run = Run.objects.get(id=run_id)
files = [str(path) for path in run.path.rglob("*") if path.is_file()]
destinations = None
path_fixer = RUN_EXPORT_MUTATIONS.get(run.analysis_version.analysis.title)
if path_fixer:
destinations = [str(path_fixer(run, path)) for path in files]
export_files.delay(export_destination_id, files, destinations)
@shared_task(name="accounts.export-mri-scan",)
def export_mri_scan(
export_destination_id: int,
scan_id: int,
file_format: Union[str, List[str]] = "DICOM",
max_parallel: int = 3,
):
"""
Exports a single MRI scan to the specified export destination.
Parameters
----------
export_destination_id : int
Export destination ID
scan_id : int
Scan ID
file_format : Union[str, List[str]]
Either DICOM or NIfTI or both
max_parallel : int
Maximal number of parallel processes
"""
# Split in case of multiple scans.
if isinstance(scan_id, Iterable):
try:
n_chunks = math.ceil(len(scan_id) / max_parallel)
except ZeroDivisionError:
# If `max_parallel` is set to 0, run all in parallel.
signatures = [
export_mri_scan.s(export_destination_id, pk, file_format)
for pk in scan_id
]
group(signatures)()
else:
# Create the inputs for each separate execution and run in chunks.
inputs = (
(export_destination_id, pk, file_format) for pk in scan_id
)
chunks = export_mri_scan.chunks(inputs, n_chunks)
chunks.group().skew()()
finally:
return
# Split in case of multiple export destinations.
if isinstance(export_destination_id, Iterable):
signatures = [
export_mri_scan.s(pk, scan_id, file_format)
for pk in export_destination_id
]
group(signatures)()
return
# Split in case of multiple file formats.
if isinstance(file_format, list):
# Fix list passed as a single string.
if len(file_format) == 1:
file_format = file_format.pop().split(",")
signatures = [
export_mri_scan.s(export_destination_id, scan_id, f)
for f in file_format
]
group(signatures)()
return
elif isinstance(file_format, str):
file_format = file_format.split(",")
if len(file_format) > 1:
export_mri_scan.delay(export_destination_id, scan_id, file_format)
return
else:
file_format = file_format.pop()
file_format = file_format.lower()
# Create an iterable of file paths.
scan = Scan.objects.get(id=scan_id)
files = [
str(path) for path in scan.get_file_paths(file_format=file_format)
]
export_files.delay(export_destination_id, files)
@shared_task(name="accounts.export-mri-session")
def export_mri_session(
export_destination_id: int,
session_id: int,
file_format: Union[str, List[str]] = "DICOM",
max_parallel: int = 3,
max_parallel_scans: int = 3,
skew: bool = True,
):
"""
Export a single session's DICOM images to some remote location.
Parameters
----------
export_destination_id : int
Export destination ID
session_id : int
Session ID
file_format : Union[str, List[str]]
Either DICOM or NIfTI or both
max_parallel : int
Maximal number of parallel processes
"""
# Split in case of multiple sessions.
if isinstance(session_id, Iterable):
try:
n_chunks = math.ceil(len(session_id) / max_parallel)
except ZeroDivisionError:
# If `max_parallel` is set to 0, run all in parallel.
signatures = [
export_mri_session.s(
export_destination_id,
pk,
file_format=file_format,
max_parallel_scans=max_parallel_scans,
)
for pk in session_id
]
group(signatures)()
else:
# Create the inputs for each separate execution and run in chunks.
inputs = (
(
export_destination_id,
pk,
file_format,
max_parallel,
max_parallel_scans,
)
for pk in session_id
)
chunks = export_mri_session.chunks(inputs, n_chunks)
grouped = chunks.group()
if skew:
grouped.skew()()
else:
grouped()
finally:
return
# Split in case of multiple export destinations.
if isinstance(export_destination_id, Iterable):
signatures = [
export_mri_session.s(
pk,
session_id,
file_format=file_format,
max_parallel=max_parallel,
max_parallel_scans=max_parallel_scans,
skew=skew,
)
for pk in export_destination_id
]
group(signatures)()
return
# Split in case of multiple file formats.
if isinstance(file_format, list):
# Fix list passed as a single string.
if len(file_format) == 1:
file_format = file_format.pop().split(",")
signatures = [
export_mri_session.s(
export_destination_id,
session_id,
file_format=f,
max_parallel=max_parallel,
max_parallel_scans=max_parallel_scans,
skew=skew,
)
for f in file_format
]
group(signatures)()
return
elif isinstance(file_format, str):
file_format = file_format.split(",")
if len(file_format) > 1:
export_mri_session.delay(
export_destination_id,
session_id,
file_format=file_format,
max_parallel=max_parallel,
max_parallel_scans=max_parallel_scans,
skew=skew,
)
return
else:
file_format = file_format.pop()
file_format = file_format.lower()
# Create an iterable of file paths.
session = Session.objects.get(id=session_id)
if file_format == "nifti":
missing_nifti = session.scan_set.filter(_nifti__isnull=True)
if missing_nifti.exists():
session.scan_set.convert_to_nifti(
force=False, persistent=True, progressbar=False
)
scan_ids = session.scan_set.values_list("id", flat=True)
export_mri_scan.delay(
export_destination_id,
list(scan_ids),
file_format=file_format,
max_parallel=max_parallel_scans,
)
@shared_task(name="accounts.export-subject-mri-data")
def export_subject_mri_data(
export_destination_id: int,
subject_id: int,
file_format: Union[str, List[str]] = "DICOM",
max_parallel: int = 3,
max_parallel_sessions: int = 3,
max_parallel_scans: int = 3,
skew: bool = True,
):
"""
Export a single subject's MRI data to some remote location.
Parameters
----------
export_destination_id : int
Export destination ID
subject_id : int
Subject ID
file_format : Union[str, List[str]]
Either DICOM or NIfTI or both
max_parallel : int
Maximal number of parallel processes
"""
if isinstance(subject_id, Iterable):
try:
n_chunks = math.ceil(len(subject_id) / max_parallel)
except ZeroDivisionError:
# If `max_parallel` is set to 0, run all in parallel.
signatures = [
export_subject_mri_data.s(
export_destination_id,
pk,
file_format=file_format,
max_parallel_sessions=max_parallel_sessions,
max_parallel_scans=max_parallel_scans,
skew=skew,
)
for pk in subject_id
]
group(signatures)()
else:
# Create the inputs for each separate execution and run in chunks.
inputs = (
(
export_destination_id,
pk,
file_format,
max_parallel,
max_parallel_sessions,
max_parallel_scans,
skew,
)
for pk in subject_id
)
chunks = export_subject_mri_data.chunks(inputs, n_chunks)
grouped = chunks.group()
if skew:
grouped.skew()()
grouped()
else:
subject = Subject.objects.get(id=subject_id)
sessions_ids = list(
subject.mri_session_set.values_list("id", flat=True)
)
export_mri_session.delay(
export_destination_id,
sessions_ids,
file_format=file_format,
max_parallel=max_parallel_sessions,
max_parallel_scans=max_parallel_scans,
skew=skew,
)