-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmdl_sf_base.py
832 lines (701 loc) · 27.1 KB
/
mdl_sf_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
import torch
from torch import nn
from torch.nn import functional as F
from typing import Dict, Optional
from utils.misc_utils import combine_first_ax
from slowfast.models.video_model_builder import SlowFast, ResNet
from fairseq.models.transformer import (
TransformerEncoder,
TransformerDecoder,
# EncoderOut,
)
from utils.transformer_code import Transformer as TxCodeEnc
from vidsitu_code.seq_gen import SeqGenCustom, EncoderOut
from transformers import GPT2LMHeadModel
from vidsitu_code.hf_gpt2_fseq import HuggingFaceGPT2Decoder
class SlowFast_FeatModel(SlowFast):
def forward_features(self, x):
x = self.s1(x)
x = self.s1_fuse(x)
x = self.s2(x)
x = self.s2_fuse(x)
for pathway in range(self.num_pathways):
pool = getattr(self, "pathway{}_pool".format(pathway))
x[pathway] = pool(x[pathway])
x = self.s3(x)
x = self.s3_fuse(x)
x = self.s4(x)
x = self.s4_fuse(x)
x = self.s5(x)
return x
def forward(self, x, bboxes=None):
x = self.forward_features
if self.enable_detection:
x = self.head(x, bboxes)
else:
x = self.head(x)
return x
class ResNet_FeatModel(ResNet):
def forward_features(self, x):
x = self.s1(x)
x = self.s2(x)
for pathway in range(self.num_pathways):
pool = getattr(self, "pathway{}_pool".format(pathway))
x[pathway] = pool(x[pathway])
x = self.s3(x)
x = self.s4(x)
x = self.s5(x)
return x
def forward(self, x, bboxes=None):
if self.enable_detection:
x = self.head(x, bboxes)
else:
x = self.head(x)
return x
class ResNetBasicHead_Trimmed(nn.Module):
"""
ResNe(X)t 3D head.
This layer performs a fully-connected projection during training, when the
input size is 1x1x1. It performs a convolutional projection during testing
when the input size is larger than 1x1x1. If the inputs are from multiple
different pathways, the inputs will be concatenated after pooling.
"""
def __init__(self, dim_in, pool_size):
"""
The `__init__` method of any subclass should also contain these
arguments.
ResNetBasicHead takes p pathways as input where p in [1, infty].
Args:
dim_in (list): the list of channel dimensions of the p inputs to the
ResNetHead.
num_classes (int): the channel dimensions of the p outputs to the
ResNetHead.
pool_size (list): the list of kernel sizes of p spatial temporal
poolings, temporal pool kernel size, spatial pool kernel size,
spatial pool kernel size in order.
"""
super().__init__()
assert (
len({len(pool_size), len(dim_in)}) == 1
), "pathway dimensions are not consistent."
self.num_pathways = len(pool_size)
self.dim_in = dim_in
for pathway in range(self.num_pathways):
if pool_size[pathway] is None:
avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
# avg_pool = nn.AvgPool3d(pool_size[pathway], stride=1)
avg_pool = nn.AvgPool3d(pool_size[pathway])
self.add_module("pathway{}_avgpool".format(pathway), avg_pool)
def forward(self, inputs):
assert (
len(inputs) == self.num_pathways
), "Input tensor does not contain {} pathway".format(self.num_pathways)
pool_out = []
for pathway in range(self.num_pathways):
m = getattr(self, "pathway{}_avgpool".format(pathway))
pool_out.append(m(inputs[pathway]))
x = torch.cat(pool_out, 1)
return x
class SFBase(nn.Module):
def __init__(self, cfg, comm):
super(SFBase, self).__init__()
self.full_cfg = cfg
self.sf_cfg = cfg.sf_mdl
self.cfg = cfg.mdl
self.comm = comm
self.build_model()
def build_model(self):
self.build_sf_model(self.sf_cfg)
self.build_head(self.sf_cfg)
self.build_projection_head(self.sf_cfg)
def build_sf_model(self, cfg):
mdl_name = cfg.MODEL.MODEL_NAME
if mdl_name == "SlowFast":
mdl = SlowFast_FeatModel(cfg)
elif mdl_name == "ResNet":
mdl = ResNet_FeatModel(cfg)
else:
raise NotImplementedError
self.sf_mdl = mdl
return
def build_head(self, cfg):
width_per_group = cfg.RESNET.WIDTH_PER_GROUP
# pool_size = _POOL1[cfg.MODEL.ARCH]
if self.comm.path_type == "multi":
self.head = ResNetBasicHead_Trimmed(
dim_in=[
width_per_group * 32,
width_per_group * 32 // cfg.SLOWFAST.BETA_INV,
],
pool_size=[None, None], # None for AdaptiveAvgPool3d((1, 1, 1))
)
elif self.comm.path_type == "single":
self.head = ResNetBasicHead_Trimmed(
dim_in=[width_per_group * 32],
pool_size=[None], # None for AdaptiveAvgPool3d((1, 1, 1))
)
return
def build_projection_head(self, cfg, out_dim=None):
if out_dim is None:
out_dim = len(self.comm.vb_id_vocab)
din = sum(self.head.dim_in)
self.proj_head = nn.Sequential(
*[nn.Linear(din, din // 2), nn.ReLU(), nn.Linear(din // 2, out_dim)]
)
def get_feats(self, inp):
if self.comm.path_type == "multi":
feat_slow = combine_first_ax(inp["frms_ev_slow_tensor"])
feat_fast = combine_first_ax(inp["frms_ev_fast_tensor"])
feats_used = [feat_slow, feat_fast]
elif self.comm.path_type == "single":
feat_fast = combine_first_ax(inp["frms_ev_fast_tensor"])
feats_used = [feat_fast]
else:
raise NotImplementedError
return feats_used
def forward_encoder(self, inp):
feats_used = self.get_feats(inp)
nfeats_used = len(feats_used)
feat_out = self.sf_mdl.forward_features(feats_used)
assert len(feat_out) == nfeats_used
return feat_out
def forward_decoder(self, enc_out, inp):
# enc_out: List
# len(enc_out) = nfeats_used
# enc_out[0]: B x C x T x H x W
head_out = self.head(enc_out)
# (B, C, T, H, W) -> (B, T, H, W, C).
head_out = head_out.permute((0, 2, 3, 4, 1))
# B = len(inp["vseg_idx"])
# assert head_out.size(1) == 1
# assert head_out.size(2) == 1
# assert head_out.size(3) == 1
# out = head_out.view(B, 5, -1)
# import pdb
# pdb.set_trace()
proj_out = self.proj_head(head_out)
B = len(inp["vseg_idx"])
out = proj_out.view(B, 5, -1)
assert out.size(-1) == len(self.comm.vb_id_vocab)
return out
def forward(self, inp: Dict):
feat_out = self.forward_encoder(inp)
mdl_out = self.forward_decoder(feat_out, inp)
return {"mdl_out": mdl_out}
class LossB(nn.Module):
def __init__(self, cfg, comm):
super().__init__()
self.cfg = cfg
self.comm = comm
self.loss_keys = ["loss"]
def forward(self, mdl_out, inp):
labels_c1 = combine_first_ax(inp["label_tensor"])
mdl_preds = mdl_out["mdl_out"]
mdl_preds_c1 = combine_first_ax(mdl_preds)
loss = F.cross_entropy(mdl_preds_c1, labels_c1)
return {"loss": loss}
class LossLambda(nn.Module):
def __init__(self, cfg, comm):
super().__init__()
self.cfg = cfg
self.comm = comm
self.loss_keys = ["loss"]
def forward(self, mdl_out, inp):
assert "loss" in mdl_out
return {"loss": mdl_out["loss"]}
class TxEncoderOld(TransformerEncoder):
def __init__(self, cfg, comm):
self.full_cfg = cfg
self.comm = comm
# dictionary = comm.vb_id_vocab
dct_id = comm.dct_id
dictionary = comm[dct_id]
num_embeddings = len(dictionary)
padding_idx = dictionary.pad_token_id
args = cfg.tx_dec
embed_dim = args.encoder_embed_dim
embed_toks = nn.Embedding(num_embeddings, embed_dim, padding_idx)
super().__init__(args, dictionary, embed_toks)
self.after_init()
def after_init(self):
return
def forward_embedding(
self, src_tokens, token_embedding: Optional[torch.Tensor] = None
):
# embed tokens and positions
if token_embedding is None:
token_embedding = self.embed_tokens(src_tokens)
x = embed = self.embed_scale * token_embedding
if self.embed_positions is not None:
x = embed + self.embed_positions(src_tokens)
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
if self.quant_noise is not None:
x = self.quant_noise(x)
return x, embed
def forward(
self,
src_tokens,
src_lengths,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
namedtuple:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx)
encoder_states = [] if return_all_hiddens else None
# encoder layers
for layer in self.layers:
x = layer(x, encoder_padding_mask)
if return_all_hiddens:
assert encoder_states is not None
encoder_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
return EncoderOut(
encoder_out=x, # T x B x C
encoder_padding_mask=encoder_padding_mask, # B x T
encoder_embedding=encoder_embedding, # B x T x C
encoder_states=encoder_states, # List[T x B x C]
src_tokens=None,
src_lengths=None,
)
class TxEncoderNew(TxCodeEnc):
def __init__(self, cfg, comm):
self.full_cfg = cfg
self.comm = comm
# dictionary = comm.vb_id_vocab
# dictionary = comm.gpt2_hf_tok
# num_embeddings = len(dictionary)
# padding_idx = dictionary.pad_token_id
args = cfg.tx_dec
# embed_dim = args.encoder_embed_dim
# embed_toks = nn.Embedding(num_embeddings, embed_dim, padding_idx)
super().__init__(
d_model=1024,
n_vocab_src=0,
vocab_trg=0,
d_hidden=1024,
n_layers=args.encoder_layers,
n_heads=args.encoder_attention_heads,
drop_ratio=args.dropout,
pe=False,
)
def forward(
self,
src_tokens=None,
src_lengths=None,
return_all_hiddens=False,
token_embeddings=None,
):
assert token_embeddings is not None
enc_out = self.encoder(token_embeddings)[-1]
return EncoderOut(
encoder_out=enc_out.transpose(0, 1).contiguous(),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def get_enc_out_base(enc_out):
return EncoderOut(
encoder_out=enc_out, # T x B x C
encoder_padding_mask=None, # B x T
encoder_embedding=None, # B x T x C
encoder_states=None, # List[T x B x C]
src_tokens=None,
src_lengths=None,
)
class TxEncoderNew_Conc(TxEncoderOld):
def after_init(self):
self.orig_tx_out_comb = nn.Sequential(
*[nn.Linear(2048, 1024), nn.ReLU(), nn.Linear(1024, 1024)]
)
return
def forward(
self,
src_tokens,
src_lengths,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
):
tx_out = super().forward(
src_tokens=src_tokens,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
token_embeddings=token_embeddings,
)
# B x T x C
enc_out = tx_out.encoder_out.transpose(0, 1).contiguous()
enc_out2 = torch.cat([token_embeddings, enc_out], dim=-1)
enc_out3 = self.orig_tx_out_comb(enc_out2)
return get_enc_out_base(enc_out=enc_out3.transpose(0, 1).contiguous())
def TxEncoder(cfg, comm):
if cfg.mdl.tx_enc_type == "old":
return TxEncoderOld(cfg, comm)
elif cfg.mdl.tx_enc_type == "new":
return TxEncoderNew(cfg, comm)
elif cfg.mdl.tx_enc_type == "new_conc":
return TxEncoderNew_Conc(cfg, comm)
else:
raise NotImplementedError
class TxDecoderReal(TransformerDecoder):
def __init__(self, cfg, comm):
self.full_cfg = cfg
self.comm = comm
dictionary = comm.gpt2_hf_tok
num_embeddings = len(dictionary)
padding_idx = dictionary.pad_token_id
args = cfg.tx_dec
embed_dim = args.decoder_embed_dim
embed_toks = nn.Embedding(num_embeddings, embed_dim, padding_idx)
super().__init__(args, dictionary, embed_toks)
class GPT2_hf_fseqDec(HuggingFaceGPT2Decoder):
def __init__(self, cfg, comm):
self.full_cfg = cfg
self.comm = comm
dictionary = comm.gpt2_hf_tok
args = cfg
super().__init__(args, dictionary)
def TxDecoder(full_cfg, comm):
if full_cfg.mdl.tx_dec_type == "gpt2":
return GPT2_hf_fseqDec(full_cfg, comm)
elif full_cfg.mdl.tx_dec_type == "txdec":
return TxDecoderReal(full_cfg, comm)
else:
raise NotImplementedError
class Simple_GPT2(nn.Module):
"""
Simply Run a GPT2 model
Assumes Verbs are given
"""
def __init__(self, cfg, comm):
super().__init__()
self.full_cfg = cfg
self.cfg = cfg.mdl
self.comm = comm
self.build_model()
def build_model(self):
self.gpt2_mdl = GPT2LMHeadModel.from_pretrained(self.cfg.gpt2_mdl_name)
self.voc_size = len(self.comm.gpt2_hf_tok)
self.gpt2_mdl.resize_token_embeddings(self.voc_size)
self.pad_index = self.comm.gpt2_hf_tok.pad_token_id
self.bos_index = self.comm.gpt2_hf_tok.eos_token_id
return
def forward_gen(self, inp, *args):
src_toks1 = inp["seq_out_by_ev"][:, :, [0], :]
B, num_ev, num_seq_eg, seq_len = src_toks1.shape
src_toks = src_toks1.view(B * num_ev, num_seq_eg * seq_len)
inp_ids = src_toks[..., :1].contiguous()
wvoc = self.comm.gpt2_hf_tok
out_sents = self.gpt2_mdl.generate(
input_ids=inp_ids,
max_length=60,
use_cache=True,
num_beams=1,
num_return_sequences=1,
do_sample=False,
pad_token_id=wvoc.pad_token_id,
)
out_sents = out_sents.view(B, num_ev, num_seq_eg, -1)
return out_sents
def forward(self, inp):
src_toks1 = inp["seq_out_by_ev"][:, :, [0], :]
src_attn1 = inp["seq_out_lens_by_ev"][:, :, [0], :]
B, num_ev, num_seq_eg, seq_len = src_toks1.shape
assert num_seq_eg == 1
src_toks = src_toks1.view(B * num_ev, num_seq_eg * seq_len)
src_attn_mask = src_attn1.view(B * num_ev, num_seq_eg * seq_len)
out = self.gpt2_mdl(
input_ids=src_toks, attention_mask=src_attn_mask, return_dict=True,
)
# B*num_ev x num_seq_eg*seq_len x vocab_size
logits = out["logits"]
# out contains logits, past_key_vals
# logits of shape: B x seq_len x vocab_size
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = src_toks[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
ignore_index=self.pad_index,
)
out["loss"] = loss
return out
class GPT2_New(GPT2LMHeadModel):
def prepare_inputs_for_generation(
self, input_ids, past=None, attention_mask=None, **kwargs
):
# only last token for inputs_ids if past is defined in kwargs
if past is None:
if "vid_emb" in kwargs:
vid_emb = kwargs.pop("vid_emb")
input_embs = self.transformer.wte(input_ids)
input_embs_new = torch.cat([vid_emb, input_embs], dim=1)
return {
"inputs_embeds": input_embs_new,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
}
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
}
class Simple_GPT2_New(Simple_GPT2):
def build_model(self):
self.gpt2_mdl = GPT2_New.from_pretrained(self.cfg.gpt2_mdl_name)
self.voc_size = len(self.comm.gpt2_hf_tok)
self.gpt2_mdl.resize_token_embeddings(self.voc_size)
self.pad_index = self.comm.gpt2_hf_tok.pad_token_id
self.bos_index = self.comm.gpt2_hf_tok.eos_token_id
return
def forward_gen(self, inp, *args):
src_toks1 = inp["seq_out_by_ev"][:, :, [0], :]
B, num_ev, num_seq_eg, seq_len = src_toks1.shape
src_toks = src_toks1.view(B * num_ev, num_seq_eg * seq_len)
inp_ids = src_toks[..., :1].contiguous()
wvoc = self.comm.gpt2_hf_tok
out_sents = self.gpt2_mdl.generate(
input_ids=inp_ids,
max_length=60 + inp_ids.size(-1),
use_cache=True,
num_beams=1,
num_return_sequences=1,
do_sample=False,
pad_token_id=wvoc.pad_token_id,
)
out_sents = out_sents.view(B, num_ev, num_seq_eg, -1)
return out_sents
class Simple_TxDec(nn.Module):
def __init__(self, cfg, comm):
super(Simple_TxDec, self).__init__()
self.full_cfg = cfg
self.cfg = cfg.mdl
self.sf_cfg = cfg.sf_mdl
self.comm = comm
self.use_encoder = False
self.build_model()
def build_model(self):
self.decoder = TxDecoder(self.full_cfg, self.comm)
self.pad_index = self.comm.gpt2_hf_tok.pad_token_id
self.bos_index = self.comm.gpt2_hf_tok.eos_token_id
self.max_decoder_positions = lambda: 1024
self.get_normalized_probs = self.decoder.get_normalized_probs
return
def forward_encoder(self, inp):
return None
def prepare_prev_toks_inp(self, inp):
dst_toks1 = inp["seq_out_by_ev"][:, :, [0], :]
dst_attn1 = inp["seq_out_lens_by_ev"][:, :, [0], :]
vb_toks1 = inp["vb_out_by_ev"][:, :, [0], :]
B, num_ev, num_seq_eg, seq_len = dst_toks1.shape
assert num_seq_eg == 1
dst_toks = dst_toks1.view(B * num_ev, num_seq_eg * seq_len)
dst_attn_mask = dst_attn1.view(B * num_ev, num_seq_eg * seq_len)
dst_lens = dst_attn_mask.sum(dim=-1)
vb_toks = vb_toks1.view(B * num_ev, num_seq_eg * vb_toks1.size(-1))
return {"dst_toks": dst_toks, "dst_lens": dst_lens, "vb_only_tokens": vb_toks}
def forward_decoder(
self, prev_tokens, encoder_out, incremental_state=None, temperature=None
):
if isinstance(encoder_out, list) and len(encoder_out) == 0:
encoder_out = None
decoder_out = self.decoder(
prev_tokens, encoder_out=encoder_out, incremental_state=incremental_state
)
return decoder_out
def forward(self, inp):
inp_prep = self.prepare_prev_toks_inp(inp)
encoder_out = self.forward_encoder(inp)
prev_tokens = inp_prep["dst_toks"]
decoder_out = self.forward_decoder(
prev_tokens=prev_tokens, encoder_out=encoder_out
)
logits = decoder_out[0]
shift_logits = logits[..., :-1, :].contiguous()
labels = inp_prep["dst_toks"]
shifted_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, logits.size(-1)),
shifted_labels.view(-1),
ignore_index=self.pad_index,
)
out_dct = {"loss": loss, "logits": logits}
return out_dct
def forward_gen(self, inp, seq_gen: SeqGenCustom):
inp_prep = self.prepare_prev_toks_inp(inp)
inp["src_tokens"] = inp_prep["dst_toks"][..., :1]
inp["src_lengths"] = inp_prep["dst_lens"]
inp_ids = inp_prep["dst_toks"][..., :1]
out_sents = seq_gen._generate(inp, prefix_tokens=inp_ids)
src_toks1 = inp["seq_out_by_ev"][:, :, [0], :]
B, num_ev, num_seq_eg, seq_len = src_toks1.shape
max_len = max([len(o[0]["tokens"]) for o in out_sents])
B1 = inp_ids.size(0)
out_sents_tensor = inp_ids.new_full((B1, max_len), self.pad_index)
for ix in range(B1):
xtoks = out_sents[ix][0]["tokens"]
out_sents_tensor[ix, : len(xtoks)] = xtoks
out_sents1 = out_sents_tensor.view(B, num_ev, num_seq_eg, -1)
return out_sents1
class Simple_TxEncDec(Simple_TxDec):
def build_model(self):
super().build_model()
self.encoder = TxEncoder(self.full_cfg, self.comm)
self.use_encoder = True
return
def forward_encoder(self, inp):
src_toks = inp["src_tokens"]
src_lens = inp["src_lengths"]
encoder_out = self.encoder(
src_toks, src_lengths=src_lens, return_all_hiddens=True
)
return encoder_out
class Reorderer:
def reorder_encoder_out(self, encoder_out: EncoderOut, new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
"""
Since encoder_padding_mask and encoder_embedding are both of type
Optional[Tensor] in EncoderOut, they need to be copied as local
variables for Torchscript Optional refinement
"""
encoder_padding_mask = encoder_out.encoder_padding_mask
encoder_embedding = encoder_out.encoder_embedding
new_encoder_out = (
encoder_out.encoder_out
if encoder_out.encoder_out is None
else encoder_out.encoder_out.index_select(1, new_order)
)
new_encoder_padding_mask = (
encoder_padding_mask
if encoder_padding_mask is None
else encoder_padding_mask.index_select(0, new_order)
)
new_encoder_embedding = (
encoder_embedding
if encoder_embedding is None
else encoder_embedding.index_select(0, new_order)
)
src_tokens = encoder_out.src_tokens
if src_tokens is not None:
src_tokens = src_tokens.index_select(0, new_order)
src_lengths = encoder_out.src_lengths
if src_lengths is not None:
src_lengths = src_lengths.index_select(0, new_order)
encoder_states = encoder_out.encoder_states
if encoder_states is not None:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return EncoderOut(
encoder_out=new_encoder_out, # T x B x C
encoder_padding_mask=new_encoder_padding_mask, # B x T
encoder_embedding=new_encoder_embedding, # B x T x C
encoder_states=encoder_states, # List[T x B x C]
src_tokens=src_tokens, # B x T
src_lengths=src_lengths, # B x 1
)
def get_head_dim(full_cfg) -> int:
if "i3d" in full_cfg.ds.vsitu.vsit_frm_feats_dir:
head_dim = 2048
elif ("slow_fast" in full_cfg.ds.vsitu.vsit_frm_feats_dir) or (
"sfast" in full_cfg.ds.vsitu.vsit_frm_feats_dir
):
head_dim = 2304
else:
raise NotImplementedError
return head_dim
class SFPreFeats_TxDec(Simple_TxDec, Reorderer):
def build_model(self):
super().build_model()
head_dim = get_head_dim(self.full_cfg)
self.vid_feat_encoder = nn.Sequential(
*[nn.Linear(head_dim, 1024), nn.ReLU(), nn.Linear(1024, 1024)]
)
self.use_encoder = True
return
def forward_encoder(self, inp):
frm_feats = inp["frm_feats"]
B = inp["vseg_idx"].size(0)
assert frm_feats.size(1) == 5
out = self.vid_feat_encoder(frm_feats)
out = out.view(B * 5, 1, -1)
encoder_out = EncoderOut(
encoder_out=out.transpose(0, 1).contiguous(), # 5 x B x vdim,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
return encoder_out
class SFPreFeats_TxEncDec(Simple_TxDec, Reorderer):
def build_model(self):
super().build_model()
head_dim = get_head_dim(self.full_cfg)
self.vid_feat_encoder = nn.Sequential(
*[nn.Linear(head_dim, 1024), nn.ReLU(), nn.Linear(1024, 1024)]
)
self.use_encoder = True
self.vid_feat_txenc = TxEncoder(self.full_cfg, self.comm)
return
def forward_encoder(self, inp):
frm_feats = inp["frm_feats"]
B = inp["vseg_idx"].size(0)
assert frm_feats.size(1) == 5
out = self.vid_feat_encoder(frm_feats)
out = out.view(B, 5, -1)
tx_out = self.vid_feat_txenc(
src_tokens=out[..., 0],
src_lengths=None,
return_all_hiddens=True,
token_embeddings=out,
)
enc_out_batch1 = tx_out.encoder_out.transpose(0, 1).contiguous()
enc_out2 = enc_out_batch1.view(B * 5, 1, -1)
enc_out3 = enc_out2.transpose(0, 1).contiguous()
encoder_out = EncoderOut(
encoder_out=enc_out3, # 1 x 5*B x vdim,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
return encoder_out