-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmentLabel.py
73 lines (60 loc) · 2.31 KB
/
segmentLabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
from baseZhang import wavread, calcMFCC
from sklearn.externals import joblib
from preprocessData import get_accuracy
from voteModels import voteIt
def singing_voice_detection(audio_path):
predict_song_label = []
true_song_label = []
if '/train/' in audio_path:
lab_path = audio_path.replace('/train/', '/lab/')[:-3] + 'lab'
elif '/test/' in audio_path:
lab_path = audio_path.replace('/test/', '/lab/')[:-3] + 'lab'
elif '/valid/' in audio_path:
lab_path = audio_path.replace('/valid/', '/lab/')[:-3] + 'lab'
else:
lab_path = 'null'
label_file = open(lab_path, 'r')
labels = label_file.readlines()
label_file.close()
audioData, fs = wavread(audio_path)
for item_label in labels:
startTime, endTime, labelY = item_label.split(' ')
startTime = float(startTime)
endTime = float(endTime)
labelY = labelY[:-1]
true_song_label.append(labelY)
audio_part_data = audioData[int(startTime * fs):int(endTime * fs)]
segment_mfcc = []
mfcc = calcMFCC(audio_part_data, fs)
for item_mfcc in mfcc:
segment_mfcc.append(item_mfcc)
models = ['Models/dt0.58.pkl', 'Models/NB0.59.pkl', 'Models/NC0.57.pkl',
'Models/NNP0.61.pkl', 'Models/sgd0.54.pkl']
all_pre = []
for model in models:
# print model
clf = joblib.load(model)
predictY = clf.predict(segment_mfcc)
all_pre.append(predictY)
voteRes = voteIt(all_pre)
if voteRes.count('sing') > voteRes.count('nosing'):
segmentLabel = 'sing'
else:
segmentLabel = 'nosing'
predict_song_label.append(segmentLabel)
return predict_song_label, true_song_label
print singing_voice_detection('../Data/wav/train/01 - 10min.wav')
def batch_svd(dataset_dir='../Data/wav/test/'):
all_pre_seg = []
all_tru_seg = []
for root, dirs, filenames in os.walk(dataset_dir):
for audioFile in filenames:
audio_path = os.path.join(root, audioFile)
if '.wav' in audio_path:
pre, tru = singing_voice_detection(audio_path)
all_pre_seg.extend(pre)
all_tru_seg.extend(tru)
print get_accuracy(all_tru_seg, all_pre_seg)
return 0
batch_svd()