-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathanimate_with_freeinit.py
151 lines (116 loc) · 6.59 KB
/
animate_with_freeinit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import datetime
import inspect
import os
from omegaconf import OmegaConf
import torch
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationFreeInitPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.util import load_weights
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
import csv, pdb, glob
import math
from pathlib import Path
from diffusers.training_utils import set_seed
def main(args):
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"outputs/{Path(args.config).stem}-{time_str}"
os.makedirs(savedir)
config = OmegaConf.load(args.config)
samples = []
sample_idx = 0
# set global seed
set_seed(42)
for model_idx, (config_key, model_config) in enumerate(list(config.items())):
motion_modules = model_config.motion_module
motion_modules = [motion_modules] if isinstance(motion_modules, str) else list(motion_modules)
for motion_module in motion_modules:
inference_config = OmegaConf.load(model_config.get("inference_config", args.inference_config))
### >>> create validation pipeline >>> ###
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
else: assert False
pipeline = AnimationFreeInitPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
).to("cuda")
pipeline = load_weights(
pipeline,
# motion module
motion_module_path = motion_module,
motion_module_lora_configs = model_config.get("motion_module_lora_configs", []),
# image layers
dreambooth_model_path = model_config.get("dreambooth_path", ""),
lora_model_path = model_config.get("lora_model_path", ""),
lora_alpha = model_config.get("lora_alpha", 0.8),
).to("cuda")
# (freeinit) initialize frequency filter for noise reinitialization -------------
pipeline.init_filter(
width = args.W,
height = args.H,
video_length = args.L,
filter_params = model_config.filter_params,
)
# -------------------------------------------------------------------------------
prompts = model_config.prompt
n_prompts = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt
random_seeds = model_config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
config[config_key].random_seed = []
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
# manually set random seed for reproduction
# if random_seed != -1: torch.manual_seed(random_seed)
if random_seed != -1: set_seed(random_seed)
else: torch.seed()
config[config_key].random_seed.append(torch.initial_seed())
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
save_prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
sample = pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = model_config.steps,
guidance_scale = model_config.guidance_scale,
width = args.W,
height = args.H,
video_length = args.L,
num_iters = args.num_iters,
use_fast_sampling = args.use_fast_sampling,
save_intermediate = args.save_intermediate,
save_dir = f"{savedir}/sample/intermediate",
save_name = f"{sample_idx}-{save_prompt}",
use_fp16 = args.use_fp16
).videos
samples.append(sample)
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{save_prompt}.gif")
print(f"save to {savedir}/sample/{save_prompt}.gif")
sample_idx += 1
samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4)
OmegaConf.save(config, f"{savedir}/config.yaml")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",)
parser.add_argument("--inference_config", type=str, default="configs/inference/inference-v1.yaml")
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--L", type=int, default=16 )
parser.add_argument("--W", type=int, default=512)
parser.add_argument("--H", type=int, default=512)
parser.add_argument("--num_iters", type=int, default=5, help="number of sampling iterations, no freeinit when num_iters=1")
parser.add_argument("--use_fast_sampling", action='store_true')
parser.add_argument("--save_intermediate", action='store_true')
parser.add_argument("--use_fp16", action='store_true')
args = parser.parse_args()
main(args)