-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest_redux.py
76 lines (57 loc) · 1.87 KB
/
test_redux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gc
import os
import sys
import time
import torch
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ezsynth.sequences import EasySequence
from ezsynth.aux_classes import RunConfig
from ezsynth.aux_utils import save_seq
from ezsynth.main_ez import Ezsynth
st = time.time()
style_paths = [
"J:/AI/Ezsynth/examples/styles/style000.jpg",
# "J:/AI/Ezsynth/examples/styles/style002.png",
# "J:/AI/Ezsynth/examples/styles/style003.png",
# "J:/AI/Ezsynth/examples/styles/style006.png",
"J:/AI/Ezsynth/examples/styles/style010.png",
# "J:/AI/Ezsynth/examples/styles/style014.png",
# "J:/AI/Ezsynth/examples/styles/style019.png",
# "J:/AI/Ezsynth/examples/styles/style099.jpg",
]
image_folder = "J:/AI/Ezsynth/examples/input"
mask_folder = "J:/AI/Ezsynth/examples/mask/mask_feather"
output_folder = "J:/AI/Ezsynth/output"
# edge_method="Classic"
edge_method = "PAGE"
# edge_method="PST"
# flow_arch = "RAFT"
# flow_model = "sintel"
flow_arch = "EF_RAFT"
flow_model = "25000_ours-sintel"
# flow_arch = "FLOW_DIFF"
# flow_model = "FlowDiffuser-things"
ezrunner = Ezsynth(
style_paths=style_paths,
image_folder=image_folder,
cfg=RunConfig(pre_mask=False, feather=5),
edge_method=edge_method,
raft_flow_model_name=flow_model,
mask_folder=mask_folder,
# do_mask=True,
do_mask=False,
flow_arch=flow_arch
)
# only_mode = EasySequence.MODE_FWD
# only_mode = EasySequence.MODE_REV
only_mode = None
stylized_frames, err_frames, flow_frames = ezrunner.run_sequences_full(
only_mode, return_flow=True
)
# stylized_frames, err_frames = ezrunner.run_sequences(only_mode)
save_seq(stylized_frames, "J:/AI/Ezsynth/output_57_efraft")
save_seq(flow_frames, "J:/AI/Ezsynth/flow_output_57_efraft")
# save_seq(err_frames, "J:/AI/Ezsynth/output_51err")
gc.collect()
torch.cuda.empty_cache()
print(f"Time taken: {time.time() - st:.4f} s")