-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
69 lines (55 loc) · 2.01 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This file predicts a paticipant show up probability .
import json
import pickle
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import dataHelper
def loadModel():
filename = 'randomForestTreeModel.dat'
regressor = pickle.load(open(filename, 'rb'))
return regressor
# Participant to be predicted. Define it yourself or
# simply copy one from the dataset
# !!! Pay attention to the feature definition !!!
to_predict = np.array([[ 9,10,20,200,9,3,1 ]]) # for this example, the regression should be 55
def processEvent(event):
f = event['feature']
toe = dataHelper.getToeVal( f.get("Type_of_event","") )
d = f.get("Distance","")
w = f.get("Warranty","")
par = f.get("Participants","")
pref = dataHelper.getEventPrefVal( f.get("Preference","") )
prof = dataHelper.getProfessionVal( f.get("Profession","") )
age = f.get("Age","")
return np.array([[toe, d, w, par, pref, prof, age]])
def predictfrommodel(event, context):
#print(event)
f = event['feature']
print(np.asarray(f))
feat = processEvent(event)
print(feat)
RDTregressor = loadModel()
number = float(RDTregressor.predict(feat))
return { 'body': json.dumps(number) }
# Uncomment this function for test purposes
def run():
RDTregressor = loadModel()
number = float(RDTregressor.predict(to_predict))
print('new prediction:', number)
event = { "feature": {
"Type_of_event":"Workshop",
"Distance" :10,
"Warranty" :20,
"Participants" :200,
"Preference" :"Summit",
"Profession" :"Student",
"Age" :1}
}
res = predictfrommodel(event, "")
print(res)
run()
#print('################################################################')
#print('######################## UBIETY ###########################')
#print('################################################################')
#print('Predicted show up probability is:', float(RDTregressor.predict(to_predict)) )
#print('################################################################')