-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvoc_eval.py
221 lines (176 loc) · 7.97 KB
/
voc_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
from tqdm import tqdm
import numpy as np
def get_batch_statistics(outputs, targets, iou_threshold):
""" Compute true positives, predicted scores and predicted labels per sample """
batch_metrics = []
pred_boxes = outputs[2]
pred_scores = outputs[0]
pred_labels = outputs[1]
true_positives = np.zeros(pred_boxes.shape[0])
target_labels = targets[0] if len(targets[0]) else []
target_boxes=targets[1]
if len(target_labels):
detected_boxes = []
for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
# # If targets are found break
# if len(detected_boxes) == len(target_labels):
# break
# Ignore if label is not one of the target labels
if pred_label not in target_labels:
continue
iou, box_index = bbox_iou(pred_box.unsqueeze(0), target_boxes).max(0)
if iou >= iou_threshold and box_index not in detected_boxes:
true_positives[pred_i] = 1
detected_boxes += [box_index]
batch_metrics.append([true_positives, pred_scores.cpu().numpy(), pred_labels.cpu().numpy()])
return batch_metrics
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
Returns the IoU of two bounding boxes
"""
if not x1y1x2y2:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
# get the corrdinates of the intersection rectangle
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
# Intersection area
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(
inter_rect_y2 - inter_rect_y1 + 1, min=0
)
# Union Area
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in tqdm(unique_classes, desc="Computing AP"):
i = pred_cls == c
n_gt = (target_cls == c).sum() # Number of ground truth objects
n_p = i.sum() # Number of predicted objects
if n_p == 0 and n_gt == 0:
continue
elif n_p == 0 or n_gt == 0:
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum()
tpc = (tp[i]).cumsum()
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(recall_curve[-1])
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(precision_curve[-1])
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
# Compute F1 score (harmonic mean of precision and recall)
p, r, ap = np.array(p), np.array(r), np.array(ap)
f1 = 2 * p * r / (p + r + 1e-16)
return p, r, ap, f1, unique_classes.astype("int32")
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([0.0], precision, [0.0]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def evaluate(model, dataloader, iou_thres):
model.eval()
labels = []
sample_metrics = [] # List of tuples (TP, confs, pred)
for batch_i, (img,boxes,classes,scale,orig_size) in enumerate(tqdm(dataloader, desc="Detecting objects")):
with torch.no_grad():
scale=scale[0]
orig_size=[np.array(orig_size[0])*scale,]
out=model(img.cuda(),orig_size)
outputs=[out[0][0],out[1][0],out[2][0]/scale]#[scores,classes,boxes]
targets=[classes[0].to(outputs[0].device),boxes[0].to(outputs[0].device)/scale]#[classes,boxes]
labels+=classes[0].numpy().tolist()
sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=iou_thres)
# Concatenate sample statistics
true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
return precision, recall, AP, f1, ap_class
if __name__ == "__main__":
from model.baseline import TestLFFD
from dataset.vocdataset import VOCDataset
import argparse,os
parser=argparse.ArgumentParser()
parser.add_argument("--weights",required=True,type=str)
args=parser.parse_args()
weights_path=args.weights
if not os.path.exists(weights_path):
raise TypeError("not exit %s"%weights_path)
class lffd_config:
class_num=2
BN=True
sizes=[(159,159),(159,159),(79,79),(79,79),(39,39),(19,19),(19,19),(19,19)]
strides=[4,4,8,8,16,32,32,32]
limit_sizes=[(10,15),(15,20),(20,40),(40,70),(70,110),(110,250),(250,400),(400,560)]
RF_sizes=[55,71,111,143,223,383,511,639]
score_threshold=0.05
nms_iou_threshold=0.2
max_detection_boxes_num=150
eval_dataset=VOCDataset("/home/xht/dataset/VOC2028",split="test")
print("INFO===>eval dataset has %d imgs"%len(eval_dataset))
eval_loader=torch.utils.data.DataLoader(eval_dataset,batch_size=1,shuffle=False,collate_fn=eval_dataset.collate_fn)
class_names=eval_dataset.CLASSES_NAME
model=TestLFFD(config=lffd_config)
model.load_state_dict(torch.load(weights_path,map_location=torch.device('cpu')))
model=model.cuda().eval()
print("===>success loading model")
print("Compute mAP...")
precision, recall, AP, f1, ap_class = evaluate(
model,
eval_loader,
iou_thres=0.5,
)
print("Average Precisions:")
for i, c in enumerate(ap_class):
print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}")
print(f"mAP: {AP.mean()}")