-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathregistry.go
244 lines (200 loc) · 5.9 KB
/
registry.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
package regparser
import (
"encoding/binary"
"errors"
"fmt"
"io"
"log"
"os"
"strings"
)
// Model a registry hive with this object.
type Registry struct {
Reader io.ReaderAt
Profile *RegistryProfile
BaseBlock *HBASE_BLOCK
}
func NewRegistry(reader io.ReaderAt) (*Registry, error) {
self := &Registry{
Reader: reader,
Profile: NewRegistryProfile(),
}
self.BaseBlock = self.Profile.HBASE_BLOCK(reader, 0)
if self.BaseBlock.Signature() != 0x66676572 {
return nil, errors.New("File does not have registry magic.")
}
return self, nil
}
// A helper method to open a key by path.
func (self *Registry) OpenKey(key_path string) *CM_KEY_NODE {
root_cell := self.Profile.HCELL(self.Reader,
0x1000+int64(self.BaseBlock.RootCell()))
nk := root_cell.KeyNode()
if nk == nil {
return nil
}
subkey_match:
for _, component := range SplitComponents(key_path) {
if component == "" {
continue
}
component = strings.ToLower(component)
for _, subkey := range nk.Subkeys() {
if strings.ToLower(subkey.Name()) == component {
nk = subkey
continue subkey_match
}
}
// If we get here we could not find the key:
return nil
}
return nk
}
// RecoverHive copies the hive to another file and applies the dirty pages
// from the log files.
//
// Returns a File object pointing to the recovered Hive. The caller is
// responsible for deleting the recovered hive file.
func RecoverHive(hive *os.File, logFiles ...*os.File) (*os.File, error) {
var (
exitErr error
baseRegistry *Registry
logRegistries []*Registry
headerUpdateNeeded bool
)
newHiveFile, err := os.CreateTemp(os.TempDir(), "")
if err != nil {
return nil, fmt.Errorf("cannot create new hive file (%v)", err)
}
_, err = io.Copy(newHiveFile, hive)
if err != nil {
exitErr = fmt.Errorf("cannot copy hive (%v)", err)
goto fail
}
baseRegistry, err = NewRegistry(newHiveFile)
if err != nil {
exitErr = fmt.Errorf("cannot parse base hive (%v)", err)
goto fail
}
if calculateChecksum(newHiveFile) != baseRegistry.BaseBlock.CheckSum() {
headerUpdateNeeded = true
}
for _, l := range logFiles {
if s, err := l.Stat(); err != nil {
exitErr = fmt.Errorf("stat syscall on file %s failed (%v)",
l.Name(), err)
goto fail
} else if s.Size() == 0 {
fmt.Printf("[info] Registry Hive %s empty: skipping\n", l.Name())
continue
}
logReg, err := NewRegistry(l)
if err != nil {
exitErr = fmt.Errorf("invalid Registry Hive in log file %s (%v)",
l.Name(), err)
goto fail
}
if logReg.BaseBlock.Type() == 1 || logReg.BaseBlock.Type() == 2 {
fmt.Printf("[warn] version %d of log file '%s' not supported. skipping\n",
logReg.BaseBlock.Type(), l.Name())
continue
}
if logReg.BaseBlock.Sequence1() < baseRegistry.BaseBlock.Sequence2() {
log.Printf("[info] skipping log file %s, sequence number mismatch (log starts at sequence number %d, base is already at %d)\n",
l.Name(), logReg.BaseBlock.Sequence1(),
baseRegistry.BaseBlock.Sequence2())
continue
}
logRegistries = append(logRegistries, logReg)
}
if len(logRegistries) == 2 {
// find the one to apply first
one := logRegistries[0]
two := logRegistries[1]
if one.BaseBlock.Sequence1() > two.BaseBlock.Sequence1() {
logRegistries[0], logRegistries[1] = logRegistries[1], logRegistries[0]
}
} else if len(logRegistries) > 2 {
exitErr = fmt.Errorf("got more than two log files, unsupported")
goto fail
}
// iterate log entries and write dirty pages to base Hive
for _, logRegistry := range logRegistries {
logEntryOffset := int64(0x200) // hard-coded offset, always 0x200
var hbinsSize, sequenceNumber, hiveFlags uint32
for hasBytesLeft(logRegistry.Reader, logEntryOffset) {
logEntry := &HIVE_LOG_ENTRY{
Reader: logRegistry.Reader,
Offset: logEntryOffset,
Profile: NewRegistryProfile()}
if logEntry.Signature() != 0x454C7648 { // HvLE magic bytes
exitErr = fmt.Errorf("HvLE block at %#x has an invalid signature", logEntryOffset)
goto fail
}
if logEntry.SequenceNumber() == logRegistry.BaseBlock.Sequence2() {
// we reached the last valid log entry of the file
break
}
for _, page := range logEntry.GetDirtyPages() {
data, err := page.Data()
if err != nil {
exitErr = fmt.Errorf("cannot read dirty page data (%v)", err)
goto fail
}
// offset to first hbin is always 0x1000, page offset is relative to that
n, err := newHiveFile.WriteAt(data, int64(page.PageOffset)+0x1000)
if n != int(page.PageSize) || err != nil {
exitErr = fmt.Errorf("cannot write page of size %#x at offset %#x (%v)",
page.PageSize, page.PageOffset, err)
goto fail
}
}
hbinsSize = logEntry.HiveBinsDataSize()
sequenceNumber = logEntry.SequenceNumber()
hiveFlags = logEntry.Flags()
logEntryOffset += int64(logEntry.LogEntrySize())
}
if headerUpdateNeeded {
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, sequenceNumber)
newHiveFile.WriteAt(buf, 4)
newHiveFile.WriteAt(buf, 8)
binary.LittleEndian.PutUint32(buf, hbinsSize)
newHiveFile.WriteAt(buf, 0x28)
binary.LittleEndian.PutUint32(buf, hiveFlags)
newHiveFile.WriteAt(buf, 0x90)
binary.LittleEndian.PutUint32(buf, calculateChecksum(newHiveFile))
newHiveFile.WriteAt(buf, 0x1fC)
}
}
return newHiveFile, nil
fail:
newHiveFile.Close()
os.Remove(newHiveFile.Name())
return nil, exitErr
}
func hasBytesLeft(reader io.ReaderAt, offset int64) bool {
buf := make([]byte, 1)
if n, err := reader.ReadAt(buf, offset); n != 1 || err != nil {
return false
}
return true
}
func calculateChecksum(reader io.ReaderAt) uint32 {
buf := make([]byte, 0x1fc)
_, err := reader.ReadAt(buf, 0)
if err != nil {
return 0
}
checksum := uint32(0)
for i := 0; i < 0x1fc; i += 4 {
checksum ^= binary.LittleEndian.Uint32(buf[i : i+4])
}
if checksum == 0 {
return 1
} else if checksum == 0xFFFFFFFF {
return 0xFFFFFFFE
} else {
return checksum
}
}