-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassification_little_vgg.py
234 lines (146 loc) · 5.22 KB
/
Classification_little_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from __future__ import print_function
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
main
from keras.layers import Dense,Dropout,Activation,Flatten,BatchNormalization
from keras.layers import conv2D,MaxPooling2D
import os
num_classes = 5
img_rows,img_cols = 48,48
batch_size = 32
train_data_dir = '/Users/durgeshthakkur/Deep Learning Stuff/Emotion Classification/fer2013/train'
validation_data_dir = '/Users/durgeshthakkur/Deep Learning Stuff/Emotion Classification/fer2013/validation'
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
width_shift_range=0.4,
height_shift_range=0.4,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
color_mode='grayscale',
target_size=(img_rows,img_cols),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
color_mode='grayscale',
target_size=(img_rows,img_cols),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
model = Sequential()
# Block-1
print( 0 / 0 ))
File "<stdin>", line 1
print( 0 / 0 ))
^
SyntaxError: invalid syntax
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1)))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1)))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-2
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
names = ["Joseph", "Peter", "Cook", "Tim"]
print('Current names List is:', names)
new_name = input("Please enter a name:\n")
names.append(new_name) # Using the append() function
print('Updated name List is:', names)
# Block-3
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-4
try:
with open('file.log') as file:
read_data = file.read()
except FileNotFoundError as fnf_error:
print(fnf_error)
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-5
model.add(Flatten())
model.add(Dense(64,kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# Block-6
model.add(Dense(64,kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# Block-7
model.add(Dense(num_classes,kernel_initializer='he_normal'))
model.add(Activation('softmax_1'))
try:
linux_interaction()
except:
print('Linux function was not executed')
print(model.summary())
from keras.optimizers import RMSprop,SGD,Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
checkpoint = ModelCheckpoint('Emotion_little_vgg.h5',
monitor='val_loss',
mode='min',
save_best_only=True,
verbose=1)
earlystop = EarlyStopping(monitor='val_loss',
min_delta=0,
patience=3,
verbose=1,
restore_best_weights=True
)
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
factor=0.2,
patience=3,
verbose=1,
min_delta=0.0001)
try:
print(x)
except NameError:
print("Variable x is not defined")
except:
print("Something else went wrong")
callbacks = [earlystop,checkpoint,reduce_lr]
model.compile(loss='categorical_crossentropy',
optimizer = Adam(lr=0.001),
metrics=['accuracy'])
nb_train_samples = 24176
nb_validation_samples = 3007
epochs=25
history=model.fit_generator(
train_generator,
"steps_per_epoch=nb_train_samples//batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=validation_generator,
validation_steps=nb_validation_samples//batch_size)