-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_linear.py
536 lines (495 loc) · 21.8 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import argparse
import time
import math
import wandb
import torch
import numpy as np
import pandas as pd
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.cuda.amp import GradScaler, autocast
from losses import AsymmetricLoss
from datasets import CocoDetection, MultiLabelCelebA, VOCDataset, MultiLabelNUS
from networks.utils import create_model_base, add_classification_head
from utils import init_distributed_mode, fix_random_seeds, mAP, ModelEma, \
initialize_exp, AverageMeter, adjust_learning_rate, warmup_learning_rate
from main_decoder import validate
def parse_option():
parser = argparse.ArgumentParser(description='PyTorch Multi supervised contrastive evaluation')
#############################
# data and model parameters #
#############################
parser.add_argument('--data', type=str, default='/home/MSCOCO_2014/')
parser.add_argument('--data-name', type=str, default='COCO')
parser.add_argument('--model-name', default='tresnet_l')
parser.add_argument('--model-path', default=None)
parser.add_argument('--num-classes', type=int, default=80)
parser.add_argument('--image-size', default=448, type=int,
metavar='N', help='input image size (default: 448)')
###############################
####### optim parameters ######
###############################
parser.add_argument('--learning_rate', type=float, default=0.01,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='60,75,90',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.2,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
###############################
####### dist parameters #######
###############################
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up distributed
training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--world_size", default=-1, type=int, help="""
number of processes: it is set automatically and
should not be passed as argument""")
parser.add_argument("--rank", default=0, type=int, help="""rank of this process:
it is set automatically and should not be passed as argument""")
parser.add_argument("--local_rank", default=0, type=int,
help="this argument is not used and should be ignored")
###############################
####### other parameters ######
###############################
parser.add_argument('--method', type=str, default='CrossEntropy',
choices=['CrossEntropy', 'Asymetric'], help='choose method')
parser.add_argument('--freeze', default=True, type=bool,
metavar='N', help='freeze backbone')
parser.add_argument('--batch-size', default=256, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
parser.add_argument('--sync_bn', type=bool, default=False,
help='synchronic batch only with distributed gpu')
parser.add_argument('--feat-dim', type=int, default=128,
help='feature dimension for contrastive learning')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--method_used', type=str, default='MultiSupCon',
choices=['MultiSupCon', 'SupCon', 'SimCLR'], help='choose method')
parser.add_argument("--checkpoint_freq", type=int, default=10,
help="Save the model periodically")
parser.add_argument('--vis_3d', default=True, type=bool,
metavar='N', help='Visualize in 3d')
parser.add_argument('--run', default=0, type=int,
metavar='N', help='run number')
parser.add_argument("--dump_path", type=str, default="./experiment_eval",
help="experiment dump path for checkpoints and log")
parser.add_argument("--seed", type=int, default=31, help="seed")
return parser
def main():
# Prepering environment
args = parse_option().parse_args()
init_distributed_mode(args)
fix_random_seeds(args.seed)
logger = initialize_exp(args, "epoch", "loss")
# Build data
if "COCO" in args.data_name:
# COCO Data loading
instances_path_val = os.path.join(args.data, 'annotations/instances_val2014.json')
instances_path_train = os.path.join(args.data, 'annotations/instances_train2014.json')
data_path_val = f'{args.data}/val2014'
data_path_train = f'{args.data}/train2014'
if args.data_name == "COCO":
train_dataset = CocoDetection(
data_path_train,
instances_path_train,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()
])
)
elif args.data_name == "COCOCrop":
train_dataset = CocoDetection(
data_path_train,
instances_path_train,
transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()
]),
boxcrop=args.image_size
)
val_dataset = CocoDetection(
data_path_val,
instances_path_val,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor()
])
)
elif "VOC" in args.data_name:
if args.data_name == "VOC":
train_dataset = VOCDataset(
args.data,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()
]),
val=False
)
elif args.data_name == "VOCrop":
train_dataset = VOCDataset(
args.data,
transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()
]),
val=False,
boxcrop=args.image_size
)
val_dataset = VOCDataset(
args.data,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor()
]),
val=True
)
elif "NUS" in args.data_name:
if args.data_name == "NUS":
train_dataset = MultiLabelNUS(
args.data,
split="train",
transform=transforms.Compose([
transforms.RandomResizedCrop(size=args.image_size, scale=(0.6, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
]),
)
val_dataset = MultiLabelNUS(
args.data,
split="val",
transform=transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor()
]),
)
elif "CELEBA" in args.data_name:
if args.data_name == "CELEBA":
train_dataset = MultiLabelCelebA(
args.data,
split="train",
transform=transforms.Compose([
transforms.RandomResizedCrop(size=args.image_size),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
])
)
val_dataset = MultiLabelCelebA(
args.data,
split="valid",
transform=transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor()
]),
)
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset,
shuffle=(sampler is None),
sampler=sampler,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
)
val_loader = torch.utils.data.DataLoader(
train_dataset,
shuffle=False,
batch_size=128,
num_workers=8
)
logger.info("Building data done with train {} images loaded and val {} images loaded.".format(len(train_dataset), len(val_dataset)))
# Build model
model = create_model_base(args)
if args.model_path:
# Loading model
checkpoint = torch.load(args.model_path,
map_location="cuda:" + str(torch.distributed.get_rank() % torch.cuda.device_count()))
model.load_state_dict(checkpoint['model_state_dict'])
# freeze
if args.freeze:
for param in model.parameters():
param.requires_grad = False
# Adding classification head
model = add_classification_head(model, args.num_classes)
# Synchronize batch norm layers
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# Copy model to GPU
model = model.cuda()
cudnn.benchmark = True
logger.info(f'Building model {args.model_name} done')
# Build optimizer and criterion
iterations = args.lr_decay_epochs.split(',')
args.lr_decay_epochs = list([])
for it in iterations:
args.lr_decay_epochs.append(int(it))
# Warm-up for large-batch training,
if args.batch_size > 256:
args.warm = True
if args.warm:
args.warmup_from = 0.01
args.warm_epochs = 10
if args.cosine:
eta_min = args.learning_rate * (args.lr_decay_rate ** 3)
args.warmup_to = eta_min + (args.learning_rate - eta_min) * (
1 + math.cos(math.pi * args.warm_epochs / args.epochs)) / 2
else:
args.warmup_to = args.learning_rate
if args.method == "CrossEntropy":
criterion = torch.nn.BCEWithLogitsLoss()
elif args.method == "Asymetric":
criterion = AsymmetricLoss(gamma_neg=4, gamma_pos=0, clip=0.05, disable_torch_grad_focal_loss=True)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
logger.info("Building optimizer and criterion done.")
# wrap model
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.gpu_to_work_on],
find_unused_parameters=True,
)
# Check for the checkpoints
log_path = os.path.join(args.dump_path, f"run_{args.run}")
if os.path.isdir(log_path):
resume = True
else:
resume = False
os.makedirs(log_path, exist_ok=True)
# Log wandb
if args.rank == 0:
wandb.login()
if resume:
wandb.init(
project="test-project",
entity="pwr-multisupcontr",
name=f"validating_linear_multi_sup_con_{args.run}",
resume=True
)
else:
wandb.init(
project="test-project",
entity="pwr-multisupcontr",
name=f"validating_multi_sup_con_{args.run}",
config={
"data": args.data,
"image-size": args.image_size,
"batch-size": args.batch_size,
"epochs": args.epochs,
"learning_rate": args.learning_rate,
"lr_decay_epochs": args.lr_decay_epochs,
"lr_decay_rate": args.lr_decay_rate,
"weight_decay": args.weight_decay,
"momentum": args.momentum,
"method": args.method,
"method_used": args.method_used,
"cosine": args.cosine,
"warm": args.warm,
"seed": args.seed,
"freeze": args.freeze,
"sync_bn:": args.sync_bn,
"numb_of_gpu_used": args.gpu_to_work_on
}
)
wandb.watch(model, log="all")
# Load checkpoint
if resume:
# Get last restore
checkpoint_last = os.path.join(log_path, "last_checkpoint.pth.tar")
checkpoint_best = os.path.join(log_path, "best_checkpoint.pth.tar")
checkpoint = torch.load(checkpoint_last,
map_location="cuda:" + str(torch.distributed.get_rank() % torch.cuda.device_count()))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
loss = checkpoint['loss']
best = torch.load(checkpoint_best,
map_location="cuda:" + str(torch.distributed.get_rank() % torch.cuda.device_count()))
else:
start_epoch = 1
best = {}
###############################
########### TRAINING ##########
###############################
best = {}
ema = ModelEma(model, 0.9997)
val_map = None
val_map_ema = None
for epoch in range(start_epoch, args.epochs+1):
# train the network for one epoch
logger.info(f"============ Starting epoch {epoch} ... ============")
# set sampler
train_loader.sampler.set_epoch(epoch)
# Adjuest learning rate
adjust_learning_rate(args, optimizer, epoch)
# train the network
scores = train(
train_loader,
model,
optimizer,
criterion,
ema,
epoch,
logger,
args
)
# save checkpoints
if args.rank == 0:
# Validate
val_map, val_map_ema, mif1, maf1, sf1 = validate(val_loader, model, ema)
logger.info(f"Validate: Epoch [{epoch}], Mean Average Precision: {val_map[0]:.3f}")
# Log to wandb metrics
wandb.log({
"loss": scores[1],
"map": scores[2],
"learning_rate": optimizer.param_groups[0]["lr"],
"val_map": val_map[0],
"val_map_ema": val_map_ema[0],
"micro_f1_score": mif1,
"macro_f1_score": maf1,
"samples_f1_score": sf1
}, step=epoch)
# Update best loss
if "map" not in best.keys():
best = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': scores[1],
'map': max(val_map[0], val_map_ema[0]),
}
# Save best loss
checkpoint_path = os.path.join(log_path, f"best_checkpoint.pth.tar")
torch.save(best, checkpoint_path)
wandb.save(checkpoint_path)
else:
if max(val_map[0], val_map_ema[0]) > best["map"]:
best = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': scores[1],
'map': max(val_map[0], val_map_ema[0]),
}
# Save best loss
checkpoint_path = os.path.join(log_path, f"best_checkpoint.pth.tar")
torch.save(best, checkpoint_path)
wandb.save(checkpoint_path)
# Save our checkpoint loc
if epoch % args.checkpoint_freq == 0 or epoch == args.epochs:
checkpoint_path = os.path.join(log_path, f"{epoch}_checkpoint.pth.tar")
checkpoint_last = os.path.join(log_path, "last_checkpoint.pth.tar")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': scores[1],
'map': max(val_map[0], val_map_ema[0]),
}, checkpoint_path)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': scores[1],
'map': max(val_map[0], val_map_ema[0]),
}, checkpoint_last)
wandb.save(checkpoint_last)
if args.rank == 0:
#Log final metrics
wandb.run.summary["best_Mean Average Precision"] = best['map']
wandb.run.summary["best_loss"] = best['loss']
wandb.run.summary["best_epoch"] = best['epoch']
if val_map:
val_ap = [(i, val_map[1][i]) for i in range(len(val_map[1]))]
val_ap_ema = [(i, val_map_ema[1][i]) for i in range(len(val_map_ema[1]))]
wandb.log({
"val_ap": wandb.Table(data=val_ap, columns=["class_id", "Average_precision"]),
"val_ap_ema": wandb.Table(data=val_ap_ema, columns=["class_id", "Average_precision"])
})
# End wandb
wandb.finish()
###############################
########### Finished ##########
###############################
logger.info("============ Finished ============")
logger.info(f"Best Mean Average Precision:: {best['map']} with loss {best['loss']} on epoch {best['epoch']}")
def train(train_loader, model, optimizer, criterion, ema, epoch, logger, args):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
mAPs = AverageMeter()
end = time.time()
scaler = GradScaler()
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
optimizer.zero_grad()
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
labels = labels.max(dim=1)[0]
bsz = labels.shape[0]
# Warm-up learning rate
warmup_learning_rate(args, epoch, idx, len(train_loader), optimizer)
# Compute loss
with autocast(): # mixed precision
output = model(images).float()
loss = criterion(output, labels.float())
# update metric
losses.update(loss.item(), bsz)
mAP_score, _ = mAP(labels.cpu().detach().numpy(), output.cpu().detach().numpy())
mAPs.update(mAP_score, bsz)
# Optimizer
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
ema.update(model)
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.rank == 0 and idx % 50 == 0:
logger.info((
f'Train: Epoch [{epoch}], Step [{idx}/{len(train_loader)}], '
f'Loss: {loss.item():.3f}, Mean Average Precision: {mAP_score:.3f}, '
f'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f}), '
f'Data Time {data_time.val:.3f} ({data_time.avg:.3f})'
))
return (epoch, losses.avg, mAPs.avg)
if __name__ == '__main__':
main()