You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
class Solution {
int ans = 0;
public int numberOfGoodPaths(int[] vals, int[][] edges) {
// key: the index of the node, value: the value of the node
Map<Integer, Integer> nodeValueMap = new HashMap<>();
int n = vals.length;
ans = n;
for (int i = 0; i < vals.length; i++) {
nodeValueMap.put(i, vals[i]);
}
// convert edges to graph
Map<Integer, List<Integer>> graph = new HashMap<>();
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
graph.computeIfAbsent(from, k -> new ArrayList<>()).add(to);
graph.computeIfAbsent(to, k -> new ArrayList<>()).add(from);
}
// find root of the multi-tree
// int root = 0;
// for (int i = 0; i < n; i++) {
// int nodeCnt = getNodeCnt(i, graph, new HashSet<>());
// if (nodeCnt == n) {
// root = i;
// break;
// }
// }
// dfs
dfs(graph, -1, 0, nodeValueMap);
return ans;
}
private Map<Integer, Integer> dfs(Map<Integer, List<Integer>> graph, int parent, int cur, Map<Integer, Integer> nodeValueMap) {
Map<Integer, Integer> curNodeValueMap = new HashMap<>();
int val = nodeValueMap.get(cur);
Map<Integer, Integer> cntMap = new HashMap<>();
List<Map<Integer, Integer>> childrenNodeValueMapList = new ArrayList<>();
curNodeValueMap.put(val, 1);
if (graph.containsKey(cur)) {
for (int next : graph.get(cur)) {
if (next == parent) {
continue;
}
Map<Integer, Integer> nextNodeValueMap = dfs(graph, cur, next, nodeValueMap);
childrenNodeValueMapList.add(nextNodeValueMap);
for (int key : nextNodeValueMap.keySet()) {
if (key >= val) {
curNodeValueMap.put(key, curNodeValueMap.getOrDefault(key, 0) + nextNodeValueMap.get(key));
cntMap.put(key, cntMap.getOrDefault(key, 0) + nextNodeValueMap.get(key));
}
if (key == val) {
ans += nextNodeValueMap.get(key);
}
}
}
}
// update ans
for (Map<Integer, Integer> childNodeValueMap : childrenNodeValueMapList) {
for (int key : childNodeValueMap.keySet()) {
if (key >= val) {
if (cntMap.containsKey(key) && cntMap.get(key) >= childNodeValueMap.get(key)) {
cntMap.put(key, cntMap.get(key) - childNodeValueMap.get(key));
}
ans += (childNodeValueMap.get(key) * cntMap.getOrDefault(key, 0));
}
}
}
return curNodeValueMap;
}
private int getNodeCnt(int node, Map<Integer, List<Integer>> graph, Set<Integer> visited) {
visited.add(node);
int cnt = 1;
if (!graph.containsKey(node)) {
return cnt;
}
for (int next : graph.get(node)) {
if (!visited.contains(next)) {
cnt += getNodeCnt(next, graph, visited);
}
}
return cnt;
}
}
class Solution {
public int numberOfGoodPaths(int[] vals, int[][] edges) {
// convert edges to graph
Map<Integer, List<Integer>> graph = new HashMap<>();
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
graph.computeIfAbsent(from, k -> new ArrayList<>()).add(to);
graph.computeIfAbsent(to, k -> new ArrayList<>()).add(from);
}
// valueMap, key: value, value: index
// ??????? why treemap?? —— connect
TreeMap<Integer, List<Integer>> valueMap = new TreeMap<>();
for (int i = 0; i < vals.length; i++) {
valueMap.computeIfAbsent(vals[i], k -> new ArrayList<>()).add(i);
}
// union find
UnionFind uf = new UnionFind(vals.length);
int ans = 0;
for (List<Integer> list : valueMap.values()) {
Map<Integer, Integer> graphMap = new HashMap<>();
for (int idx : list) {
if (!graph.containsKey(idx)) {
continue;
}
for (int next : graph.get(idx)) {
if (vals[next] <= vals[idx]) {
uf.union_set(idx, next);
}
}
}
for (int idx : list) {
int root = uf.find(idx);
graphMap.put(root, graphMap.getOrDefault(root, 0) + 1);
}
for (int count : graphMap.values()) {
ans += count * (count + 1) / 2;
}
}
return ans;
}
}
class UnionFind {
int[] parent;
int[] rank;
public UnionFind(int size) {
parent = new int[size];
for (int i = 0; i < size; i++)
parent[i] = i;
rank = new int[size];
}
public int find(int x) {
if (parent[x] != x)
parent[x] = find(parent[x]);
return parent[x];
}
public void union_set(int x, int y) {
int xRoot = find(x);
int yRoot = find(y);
if (xRoot == yRoot)
return;
if (rank[xRoot] < rank[yRoot]) {
parent[xRoot] = yRoot;
rank[yRoot] += rank[xRoot];
} else {
parent[yRoot] = xRoot;
rank[xRoot] += rank[yRoot];
}
}
}
这道题是类似多叉树中求path的问题。
我总结了下,对于树/图问题,我的解决方法有如下几种:
所以我一开始的想法,看到是Path问题,就想利用树状DP来解决:
这里有一些问题:
感觉代码思路没什么问题,但卡在最后十几个test用例上,最后TLE了。
那么正解是什么呢?如何只用O(n)或者O(nlgn)的时间复杂度呢?
可以这么想,题目要求找到一个起始点value相同的节点,然后在路径中还要要求所有节点的value小于等于起始点value。是不是能将树/图分割成一个个群?即使用并查集算法,从每一个value相同的初始孤立的节点开始;然后问题是如果在并查集中如何merge节点呢?先从value小的开始,按顺序到大的,这样我们就只需要merge相邻节点即可;最后记录所有节点的群,及群的节点个数,求组成的path个数,遍历出现value的节点,用Map存储,key表示群的根节点,val表示同时为根节点相等的value相等的个数;最后我们知道每个群有多少个相同的value节点,然后用数学方法求子集,即count*(count+1)/2。
Tips:
int count : graphMap.values()
,key不重要了,我们只需要计算在一个群中相同value节点的个数同时,注意多叉树的path问题,可以用排序+并查集解决。
类似题目:
The text was updated successfully, but these errors were encountered: