-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtokdiff.py
115 lines (105 loc) · 4.95 KB
/
tokdiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
# Copyright 2009 Max Battcher <me@worldmaker.net>. Licensed under the MS-PL.
from difflib import SequenceMatcher
from diff_match_patch import diff_match_patch
import argparse
import pygments
import pygments.lexers
import sys
"""
This is a simple diff utility based upon pygments' lexer token streams.
"""
def dmp_diffs(lexer, dmp, a, b):
diffs = []
lexa = list(pygments.lex(a, lexer))
lexb = list(pygments.lex(b, lexer))
sm = SequenceMatcher(None, lexa, lexb)
for op, a1, a2, b1, b2 in sm.get_opcodes():
if op == 'equal':
diffs.append((dmp.DIFF_EQUAL,
''.join(val for type, val in lexa[a1:a2])))
elif op == 'replace':
for line in ''.join(val for type, val
in lexa[a1:a2]).splitlines(True):
diffs.append((dmp.DIFF_DELETE, line))
for line in ''.join(val for type, val
in lexb[b1:b2]).splitlines(True):
diffs.append((dmp.DIFF_INSERT, line))
elif op == 'insert':
for line in ''.join(val for type, val
in lexb[b1:b2]).splitlines(True):
diffs.append((dmp.DIFF_INSERT, line))
elif op == 'delete':
for line in ''.join(val for type, val
in lexb[a1:a2]).splitlines(True):
diffs.append((dmp.DIFF_DELETE, line))
return diffs
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generates tokenized diffs using Pygments")
parser.add_argument('lexername', help="Pygments lexer to utilize")
parser.add_argument('file1', type=argparse.FileType('r'))
parser.add_argument('file2', type=argparse.FileType('r'))
parser.add_argument('-o', '--out', type=argparse.FileType('w'),
default=sys.stdout)
group = parser.add_mutually_exclusive_group()
group.add_argument('-v', '--verbose', action='store_true',
help='Verbose tokenization diff')
group.add_argument('-u', '--unidiff', action='store_true',
help='Unidiff-like character-based diff (default)')
group.add_argument('-d', '--delta', action='store_true',
help='Simplified intermediate delta (unstable)')
group.add_argument('-c', '--compare', action='store_true',
help='HTML comparison of tokenized diff to char diffs')
data = parser.parse_args()
lexer = pygments.lexers.get_lexer_by_name(data.lexername)
a = data.file1.read()
b = data.file2.read()
data.unidiff = not data.verbose and not data.delta and not data.compare
if data.verbose:
lexa = list(pygments.lex(a, lexer))
lexb = list(pygments.lex(b, lexer))
sm = SequenceMatcher(None, lexa, lexb)
for op, a1, a2, b1, b2 in sm.get_opcodes():
if op == 'equal':
for item in lexa[a1:a2]:
data.out.write(" %s: %s\n" % item)
elif op == 'replace':
data.out.write("~~~\n")
for item in lexa[a1:a2]:
data.out.write("- %s: %s\n" % item)
for item in lexb[b1:b2]:
data.out.write("+ %s: %s\n" % item)
data.out.write("~~~\n")
elif op == 'insert':
for item in lexb[b1:b2]:
data.out.write("+ %s: %s\n" % item)
elif op == 'delete':
for item in lexa[a1:a2]:
data.out.write("- %s: %s\n" % item)
else:
data.out.write("<<%s>>\n" % op)
else:
dmp = diff_match_patch()
diffs = dmp_diffs(lexer, dmp, a, b)
if data.unidiff:
patches = dmp.patch_make(diffs)
data.out.write(dmp.patch_toText(patches))
elif data.delta:
data.out.write(dmp.diff_toDelta(diffs))
elif data.compare:
import timeit
data.out.write("<h1>Token diff</h1><code><pre>")
data.out.write(dmp.diff_prettyHtml(diffs))
data.out.write("</pre></code>")
t = timeit.Timer("dmp_diffs(lexer, dmp, a, b)", "from diff_match_patch import diff_match_patch; from __main__ import dmp_diffs; import pygments; dmp = diff_match_patch(); a = open('%s', 'r').read(); b = open('%s', 'r').read(); lexer = pygments.lexers.get_lexer_by_name('%s')" % (data.file1.name, data.file2.name, data.lexername))
data.out.write("<p>Average computation time: %.2f usecs</p>" % (
10 * t.timeit(number=10)/10))
data.out.write("<h1>Character diff</h1><code><pre>")
dmpdiffs = dmp.diff_main(a, b)
data.out.write(dmp.diff_prettyHtml(dmpdiffs))
data.out.write("</pre></code>")
t = timeit.Timer("dmp.diff_main(a, b)", "from diff_match_patch import diff_match_patch; dmp = diff_match_patch(); a = open('%s', 'r').read(); b = open('%s', 'r').read()" % (data.file1.name, data.file2.name))
data.out.write("<p>Average computation time: %.2f usecs</p>" % (
10 * t.timeit(number=10)/10))
# vim: ai et ts=4 sts=4 sw=4