diff --git a/src/finn/custom_op/general/im2col.py b/src/finn/custom_op/general/im2col.py index a266b18..0015875 100644 --- a/src/finn/custom_op/general/im2col.py +++ b/src/finn/custom_op/general/im2col.py @@ -10,8 +10,19 @@ # of shape (batches, channels, height, width) +def compute_conv_output_dim_2D_padding(ifm_dim, k, stride, pad=0): + """Returns spatial output dimension size for convolution with given params. + Pad denotes the total amount of padding among a certain dimension""" + if ifm_dim == 1: + out_dim = 1 + else: + out_dim = int(((ifm_dim + pad - k) / stride) + 1) + return out_dim + + def compute_conv_output_dim(ifm_dim, k, stride, pad=0): - """Returns spatial output dimension size for convolution with given params.""" + """Returns spatial output dimension size for convolution with given params. + Pad is either 0 or 1""" if ifm_dim == 1: out_dim = 1 else: @@ -25,8 +36,10 @@ def get_im2col_indices_nchw( """Returns im2col indices.""" # First figure out what the size of the output should be N, C, H, W = x_shape - out_height = compute_conv_output_dim(H, field_height, stride_y, padding) - out_width = compute_conv_output_dim(W, field_width, stride_x, padding) + pad_H = padding[0] + padding[2] + pad_W = padding[1] + padding[3] + out_height = compute_conv_output_dim_2D_padding(H, field_height, stride_y, pad_H) + out_width = compute_conv_output_dim_2D_padding(W, field_width, stride_x, pad_W) i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) @@ -53,21 +66,21 @@ def im2col_indices_nchw( if H == 1: # Shape of input image is: (1, C, 1, W) x_padded = np.pad( x, - ((0, 0), (0, 0), (0, 0), (p, p)), + ((0, 0), (0, 0), (0, 0), (p[1], p[3])), mode="constant", constant_values=pad_val, ) elif W == 1: # Shape of input image is: (1, C, H, 1) x_padded = np.pad( x, - ((0, 0), (0, 0), (p, p), (0, 0)), + ((0, 0), (0, 0), (p[0], p[2]), (0, 0)), mode="constant", constant_values=pad_val, ) elif H > 1 and W > 1: # Shape of input image is: (1, C, H, W) x_padded = np.pad( x, - ((0, 0), (0, 0), (p, p), (p, p)), + ((0, 0), (0, 0), (p[0], p[2]), (p[1], p[3])), mode="constant", constant_values=pad_val, ) @@ -101,7 +114,7 @@ def get_nodeattr_types(self): "stride": ("i", True, 1), "kernel_size": ("ints", True, []), "input_shape": ("s", True, ""), - "pad_amount": ("i", False, 0), + "pad_amount": ("ints", False, [0, 0, 0, 0]), # default: no padding "pad_value": ("i", False, 0), # depthwise: if 1, infer ConvolutionInputGenerator with depthwise == 1 "depthwise": ("i", False, 0, {0, 1}), @@ -111,7 +124,11 @@ def make_shape_compatible_op(self, model): k = self.get_nodeattr("kernel_size") # Assumption: Height x Width stride = self.get_nodeattr("stride") ishape = self.get_nodeattr("input_shape") - pad = self.get_nodeattr("pad_amount") + pad = self.get_nodeattr( + "pad_amount" + ) # padding: [H_begin, W_begin, H_end, W_end] + pad_H = pad[0] + pad[2] + pad_W = pad[1] + pad[3] # convert string into list of integers ishape = ishape.strip("(") @@ -142,8 +159,8 @@ def make_shape_compatible_op(self, model): k_W == 1 ), "Unexpected kernel shape for input image of dimensions (N, H, 1, C)" - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_W) # implement tensor with correct shape values = np.random.randn(1, ofm_dim_H, ofm_dim_W, k_H * k_W * ifm_ch).astype( @@ -180,6 +197,8 @@ def execute_node(self, context, graph): stride = self.get_nodeattr("stride") pad = self.get_nodeattr("pad_amount") + pad_H = pad[0] + pad[2] + pad_W = pad[1] + pad[3] pad_val = self.get_nodeattr("pad_value") iname = node.input[0] x = context[iname] @@ -187,8 +206,9 @@ def execute_node(self, context, graph): ret = util.get_by_name(qnt_annotations, iname, "tensor_name") ret = util.get_by_name(ret.quant_parameter_tensor_names, "finn_datatype", "key") idt = DataType[ret.value] - if pad != 0: - assert idt.allowed(pad_val), "Im2Col dtype must allow pad_val" + for val in pad: + if val != 0: + assert idt.allowed(val), "Im2Col dtype must allow pad_val" # check that input is NHWC assert x.ndim == 4, "Unexpected number of input dims for Im2Col" N, H, W, C = x.shape @@ -202,8 +222,9 @@ def execute_node(self, context, graph): k_W == 1 ), "Unexpected kernel shape for input image of dimensions (N, H, 1, C)" - out_dim_H = compute_conv_output_dim(H, k_H, stride, pad) - out_dim_W = compute_conv_output_dim(W, k_W, stride, pad) + out_dim_H = compute_conv_output_dim_2D_padding(H, k_H, stride, pad_H) + out_dim_W = compute_conv_output_dim_2D_padding(W, k_W, stride, pad_W) + # internally convert input to NCHW x = x.transpose(0, 3, 1, 2) # call NCHW im2col implementation diff --git a/tests/custom_op/test_im2col.py b/tests/custom_op/test_im2col.py index 7ae22ec..7454957 100644 --- a/tests/custom_op/test_im2col.py +++ b/tests/custom_op/test_im2col.py @@ -4,7 +4,7 @@ import finn.core.onnx_exec as oxe from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper -from finn.custom_op.general.im2col import compute_conv_output_dim +from finn.custom_op.general.im2col import compute_conv_output_dim_2D_padding from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.infer_shapes import InferShapes @@ -23,10 +23,12 @@ def check_two_dict_for_equality(dict1, dict2): def execution_im2col( - x, idt, k_H, k_W, stride, ifm_ch, ifm_dim_H, ifm_dim_W, pad_amt=0, pad_val=0 + x, idt, k_H, k_W, stride, ifm_ch, ifm_dim_H, ifm_dim_W, pad_amt, pad_val=0 ): - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) # set up onnx model inp = helper.make_tensor_value_info( @@ -103,11 +105,13 @@ def test_im2col(): ifm_ch = 1 ifm_dim_H = 4 ifm_dim_W = 4 - pad_amt = 0 + pad_amt = [0, 0, 0, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -188,11 +192,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 4 ifm_dim_W = 4 - pad_amt = 0 + pad_amt = [0, 0, 0, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -244,11 +250,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 4 ifm_dim_W = 4 - pad_amt = 1 + pad_amt = [1, 1, 1, 1] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -320,11 +328,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 4 ifm_dim_W = 5 - pad_amt = 0 + pad_amt = [0, 0, 0, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -379,11 +389,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 4 ifm_dim_W = 5 - pad_amt = 0 + pad_amt = [0, 0, 0, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -432,11 +444,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 4 ifm_dim_W = 5 - pad_amt = 1 + pad_amt = [1, 1, 1, 1] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [ @@ -505,11 +519,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 5 ifm_dim_W = 1 - pad_amt = 0 + pad_amt = [0, 0, 0, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]], @@ -536,11 +552,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 5 ifm_dim_W = 1 - pad_amt = 1 + pad_amt = [1, 0, 1, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]], @@ -575,11 +593,13 @@ def test_im2col(): ifm_ch = 2 ifm_dim_H = 5 ifm_dim_W = 1 - pad_amt = 1 + pad_amt = [1, 0, 1, 0] + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] pad_val = 0 - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) x = np.asarray( [[[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]]], @@ -607,10 +627,12 @@ def test_im2col_infer_shapes(): ifm_ch = 1 ifm_dim_H = 4 ifm_dim_W = 4 - pad_amt = 0 # default + pad_amt = [0, 0, 0, 0] # default + pad_amt_H = pad_amt[0] + pad_amt[2] + pad_amt_W = pad_amt[1] + pad_amt[3] - ofm_dim_H = compute_conv_output_dim(ifm_dim_H, k_H, stride, pad_amt) - ofm_dim_W = compute_conv_output_dim(ifm_dim_W, k_W, stride, pad_amt) + ofm_dim_H = compute_conv_output_dim_2D_padding(ifm_dim_H, k_H, stride, pad_amt_H) + ofm_dim_W = compute_conv_output_dim_2D_padding(ifm_dim_W, k_W, stride, pad_amt_W) # set up onnx model inp = helper.make_tensor_value_info(