-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlm.sh
executable file
·1068 lines (926 loc) · 43.1 KB
/
lm.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/bin/bash
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
log() {
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%dT%H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
min() {
local a b
a=$1
for b in "$@"; do
if [ "${b}" -le "${a}" ]; then
a="${b}"
fi
done
echo "${a}"
}
SECONDS=0
# General configuration
stage=1 # Processes starts from the specified stage.
stop_stage=10000 # Processes is stopped at the specified stage.
skip_stages= # Processes is stopped at the specified stage.
skip_data_prep=false # Skip data preparation stages
skip_train=false # Skip training stages
skip_eval=false # Skip decoding and evaluation stages
skip_upload=true # Skip packing and uploading to zenodo
skip_upload_hf=true # Skip uploading to hugging face stages.
ngpu=1 # The number of gpus ("0" uses cpu, otherwise use gpu).
num_nodes=1 # The number of nodes
nj=32 # The number of parallel jobs.
dumpdir=dump # Directory to dump features.
inference_nj=4 # The number of parallel jobs in decoding.
gpu_inference=false # Whether to perform gpu decoding.
expdir=exp # Directory to save experiments.
python=python3 # Specify python to execute espnet commands
split_asr=false # ASR audio is split and needs to be combined after inference
# Data preparation related
local_data_opts= # The options given to local/data.sh.
# Feature extraction related
feats_type=raw # Feature type (raw, or extracted).
audio_format=flac # Audio format: wav, flac, wav.ark, flac.ark (only in feats_type=raw).
fs=16k # Sampling rate.
min_wav_duration=0.1 # Minimum duration in second.
max_wav_duration=20 # Maximum duration in second.
# Kmeans related
km_dir= # Path to pretrained kmeans model
learn_kmeans=false # boolean flag to note whether to learn kmeans
kmeans_opts= # The options given to scripts/feats/perform_kmeans.sh, needed when kmeans is trained
kmeans_feature="hubert_base/6" # format: ssl_model_type/layer_idx (e.g. mfcc, hubert_large/21, wavlm_large/21), needed when kmeans is trained
portion=0.1
nclusters=1000 # The number of clusters for discrete tokens, needed when kmeans is trained
storage_save_mode=true # Save storage on SSL feature extraction
# If true, feature extraction and kmeans clustering on the fly
# Tokenization related
token_type=bpe # Tokenization type (char or bpe).
token_case="ts"
nbpe=30 # The number of BPE vocabulary.
bpemode=unigram # Mode of BPE (unigram or bpe).
oov="<unk>" # Out of vocabulary symbol.
blank="<blank>" # CTC blank symbol
bpe_char_cover=1.0 # character coverage when modeling BPE for source language
sos_eos="<sos/eos>" # sos and eos symbole
bpe_input_sentence_size=100000000 # Size of input sentence for BPE.
bpe_nlsyms= # non-linguistic symbols list, separated by a comma or a file containing 1 symbol per line, for BPE
# Language model related
lm_tag= # Suffix to the result dir for language model training.
lm_exp= # Specify the directory path for LM experiment.
# If this option is specified, lm_tag is ignored.
lm_stats_dir= # Specify the directory path for LM statistics.
lm_config= # Config for language model training.
lm_args= # Arguments for language model training, e.g., "--max_epoch 10".
# Note that it will overwrite args in lm config.
num_splits_lm=1 # Number of splitting for lm corpus.
# Decoding related
batch_size=1
inference_tag= # Suffix to the result dir for decoding.
inference_args= # Arguments for decoding, e.g., "--lm_weight 0.1".
# Note that it will overwrite args in inference config.
inference_lm=valid.acc.ave.pth # Language model path for decoding.
download_model= # Download a model from Model Zoo and use it for decoding.
# [Task dependent] Set the datadir name created by local/data.sh
train_set= # Name of training set.
valid_set= # Name of validation set used for monitoring/tuning network training.
test_sets= # Names of test sets. Multiple items (e.g., both dev and eval sets) can be specified.
bpe_train_text= # Text file path of bpe training set.
lm_test_text_asr= # Text file path of asr evaluation set.
lm_test_text_tts= # Text file path of tts evaluation set.
lm_test_text_textlm="dummy" # Text file path of textlm evaluation set.
lm_test_text_speechlm="dummy" # Text file path of unitlm evaluation set.
lm_inference_asr_config= # Config for decoding asr.
lm_inference_tts_config= # Config for decoding tts.
lang=noinfo # The language type of corpus.
nlsyms_txt=none # Non-linguistic symbol list if existing.
cleaner=none # Text cleaner.
g2p=none # g2p method (needed if token_type=phn).
lm_fold_length=150 # fold_length for LM training.
# Language Model specific parameters
use_speech=true
use_text=true
help_message=$(cat << EOF
Usage: $0 --train-set "<train_set_name>" --valid-set "<valid_set_name>" --test_sets "<test_set_names>"
Options:
# General configuration
--stage # Processes starts from the specified stage (default="${stage}").
--stop_stage # Processes is stopped at the specified stage (default="${stop_stage}").
--skip_stages # Spicify the stage to be skipped (default="${skip_stages}").
--skip_data_prep # Skip data preparation stages (default="${skip_data_prep}").
--skip_train # Skip training stages (default="${skip_train}").
--skip_eval # Skip decoding and evaluation stages (default="${skip_eval}").
--skip_upload # Skip packing and uploading stages (default="${skip_upload}").
--skip_upload_hf # Skip packing and uploading stages (default="${skip_upload_hf}").
--ngpu # The number of gpus ("0" uses cpu, otherwise use gpu, default="${ngpu}").
--num_nodes # The number of nodes (default="${num_nodes}").
--nj # The number of parallel jobs (default="${nj}").
--inference_nj # The number of parallel jobs in decoding (default="${inference_nj}").
--gpu_inference # Whether to perform gpu decoding (default="${gpu_inference}").
--dumpdir # Directory to dump features (default="${dumpdir}").
--expdir # Directory to save experiments (default="${expdir}").
--python # Specify python to execute espnet commands (default="${python}").
# Data preparation related
--local_data_opts # The options given to local/data.sh (default="${local_data_opts}").
# Feature extraction related
--feats_type # Feature type (raw, or extracted, default="${feats_type}").
--audio_format # Audio format: wav, flac, wav.ark, flac.ark (only in feats_type=raw or raw_copy, default="${audio_format}").
--fs # Sampling rate (default="${fs}").
--min_wav_duration # Minimum duration in second (default="${min_wav_duration}").
--max_wav_duration # Maximum duration in second (default="${max_wav_duration}").
# Tokenization related
--token_type # Tokenization type (char or bpe, default="${token_type}").
--token_case # Token case type: ts: true sequence rm: remove repitions.
--nbpe # The number of BPE vocabulary (default="${nbpe}").
--bpemode # Mode of BPE (unigram or bpe, default="${bpemode}").
--oov # Out of vocabulary symbol (default="${oov}").
--blank # CTC blank symbol (default="${blank}").
--sos_eos # sos and eos symbole (default="${sos_eos}").
--bpe_input_sentence_size # Size of input sentence for BPE (default="${bpe_input_sentence_size}").
--bpe_nlsyms # Non-linguistic symbol list for sentencepiece, separated by a comma or a file containing 1 symbol per line . (default="${bpe_nlsyms}").
--bpe_char_cover # Character coverage when modeling BPE (default="${bpe_char_cover}").
# Kmeans related
--km_dir # Path to pretrained kmeans model
--learn_kmeans # boolean flag to note whether to learn kmeans (default=false).
--kmeans_opts # The options given to kmeans step (default="${kmeans_opts}").
--kmeans_feature # The string indicates the kmeans features (default="${kmeans_feature}").
--portion # The portion of data used to train kmeans (default="${portion}").
--nclusters # The number of clusters for discrete tokens (default="${nclusters}").
--storage_save_mode # # Save storage on SSL feature extraction. If true, feature extraction and kmeans clustering on the fly (default="${storage_save_mode}").
# Language model related
--lm_tag # Suffix to the result dir for language model training (default="${lm_tag}").
--lm_exp # Specify the directory path for LM experiment.
# If this option is specified, lm_tag is ignored (default="${lm_exp}").
--lm_stats_dir # Specify the directory path for LM statistics (default="${lm_stats_dir}").
--lm_config # Config for language model training (default="${lm_config}").
--lm_args # Arguments for language model training (default="${lm_args}").
# e.g., --lm_args "--max_epoch 10"
# Note that it will overwrite args in lm config.
--num_splits_lm # Number of splitting for lm corpus (default="${num_splits_lm}").
# Decoding related
--inference_tag # Suffix to the result dir for decoding (default="${inference_tag}").
--inference_args # Arguments for decoding (default="${inference_args}").
# e.g., --inference_args "--lm_weight 0.1"
# Note that it will overwrite args in inference config.
--inference_lm # Language model path for decoding (default="${inference_lm}").
--download_model # Download a model from Model Zoo and use it for decoding (default="${download_model}").
# [Task dependent] Set the datadir name created by local/data.sh
--train_set # Name of training set (required).
--valid_set # Name of validation set used for monitoring/tuning network training (required).
--test_sets # Names of test sets.
# Multiple items (e.g., both dev and eval sets) can be specified (required).
--bpe_train_text # Text file path of bpe training set.
--lm_test_text_asr # Text file path of asr evaluation set.
--lm_test_text_tts # Text file path of tts evaluation set.
--lm_test_text_textlm # Text file path of textlm evaluation set.
--lm_test_text_speechlm # Text file path of unitlm evaluation set.
--lm_inference_asr_config # Config for decoding asr.
--lm_inference_tts_config # Config for decoding tts.
--nlsyms_txt # Non-linguistic symbol list if existing (default="${nlsyms_txt}").
--lang # The language type of corpus (default=${lang}).
--cleaner # Text cleaner (default="${cleaner}").
--g2p # g2p method (default="${g2p}").
# Language Model specific parameters
--use_speech # Whether to use speech for langauge model
--use_text # Whether to use text for langauge model
EOF
)
log "$0 $*"
# Save command line args for logging (they will be lost after utils/parse_options.sh)
run_args=$(pyscripts/utils/print_args.py $0 "$@")
. utils/parse_options.sh
if [ $# -ne 0 ]; then
log "${help_message}"
log "Error: No positional arguments are required."
exit 2
fi
. ./path.sh
. ./cmd.sh
# Check required arguments
if ! "${skip_train}"; then
[ -z "${train_set}" ] && { log "${help_message}"; log "Error: --train_set is required"; exit 2; };
[ -z "${valid_set}" ] && { log "${help_message}"; log "Error: --valid_set is required"; exit 2; };
fi
if [ -n "${train_set}" ] && [ "${train_set}" = "${valid_set}" ]; then
log "Error: train_set and valid_set must be different. --train_set ${train_set} --valid_set ${valid_set}"
exit 1
fi
_test_sets=
for dset in ${test_sets}; do
if [ "${dset}" = "${train_set}" ]; then
log "Error: train_set and test_sets must be different. --train_set ${train_set} --test_sets ${test_sets}"
exit 1
fi
if [ "${dset}" = "${valid_set}" ]; then
log "Info: The valid_set '${valid_set}' is included in the test_sets. '--eval_valid_set true' is set and '${valid_set}' is removed from the test_sets"
eval_valid_set=true
elif [[ " ${_test_sets} " =~ [[:space:]]${dset}[[:space:]] ]]; then
log "Info: ${dset} is duplicated in the test_sets. One is removed"
else
_test_sets+="${dset} "
fi
done
test_sets=${_test_sets}
# Check feature type
if [ "${feats_type}" = raw ]; then
data_audio=${dumpdir}/audio_raw
data_extract=${dumpdir}/extracted
data_feats=${dumpdir}/"${feats_type}"
else
log "${help_message}"
log "Error: not supported: --feats_type ${feats_type}"
exit 2
fi
lm_train_text="${data_feats}/${train_set}/lm_text"
lm_dev_text="${data_feats}/${valid_set}/lm_text"
[ -z "${bpe_train_text}" ] && bpe_train_text="${data_feats}/org/${train_set}/text"
# Check tokenization type
if [ "${lang}" != noinfo ]; then
token_listdir=data/${lang}_token_list
else
token_listdir=data/token_list
fi
bpedir="${token_listdir}/bpe_${bpemode}${nbpe}"
bpeprefix="${bpedir}"/bpe
bpemodel="${bpeprefix}".model
bpetoken_list="${bpedir}"/tokens.txt
chartoken_list="${token_listdir}"/char/tokens.txt
if [ "${token_type}" = bpe ]; then
token_list="${bpetoken_list}"
elif [ "${token_type}" = char ]; then
token_list="${chartoken_list}"
bpemodel=none
else
log "Error: not supported --token_type '${token_type}'"
exit 2
fi
if [ ${kmeans_feature} = "mfcc" ]; then # MFCC has no layer
kmeans_feature_type=$(echo "${kmeans_feature}" | cut -d/ -f1)
layer=
kmeans_feature_conf="{type=mfcc}"
else
kmeans_feature_type=$(echo "${kmeans_feature}" | cut -d/ -f1)
layer=$(echo "${kmeans_feature}" | cut -d/ -f2)
s3prl_conf="{upstream=${kmeans_feature_type}}"
kmeans_feature_conf="{type=s3prl,conf={s3prl_conf=${s3prl_conf},download_dir=ckpt,multilayer_feature=False,layer=${layer}}}"
fi
if [ -z "${km_dir}" ]; then
km_dir="${expdir}"/kmeans/$(echo "${kmeans_feature}" | tr "/" "_")_${nclusters}clusters
fi
if [ -z "${lm_tag}" ]; then
if [ -n "${lm_config}" ]; then
lm_tag="$(basename "${lm_config}" .yaml)"
else
lm_tag="train"
fi
if [ "${lang}" != noinfo ]; then
lm_tag+="_${lang}_${token_type}"
else
lm_tag+="_${token_type}"
fi
if [ "${token_type}" = bpe ]; then
lm_tag+="${nbpe}"
fi
# Add overwritten arg's info
if [ -n "${lm_args}" ]; then
lm_tag+="$(echo "${lm_args}" | sed -e "s/--/\_/g" -e "s/[ |=/]//g")"
fi
fi
if [ -z "${lm_stats_dir}" ]; then
if [ "${lang}" != noinfo ]; then
lm_stats_dir="${expdir}/lm_stats_${lang}_${token_type}"
else
lm_stats_dir="${expdir}/lm_stats_${token_type}"
fi
if [ "${token_type}" = bpe ]; then
lm_stats_dir+="${nbpe}"
fi
fi
if [ -z "${lm_exp}" ]; then
lm_exp="${expdir}/lm_${lm_tag}"
fi
if "${skip_data_prep}"; then
skip_stages+="1 2 3 4 5 "
fi
if "${skip_train}"; then
skip_stages+="2 4 5 6 7 "
fi
if "${skip_eval}"; then
skip_stages+="8 9 10 "
fi
if "${skip_upload}" && "${skip_upload_hf}"; then
skip_stages+="11 12 13 "
elif "${skip_upload}"; then
skip_stages+="12 "
elif "${skip_upload_hf}"; then
skip_stages+="13 "
fi
skip_stages=$(echo "${skip_stages}" | tr ' ' '\n' | sort -nu | tr '\n' ' ')
log "Skipped stages: ${skip_stages}"
# ========================== Main stages start from here. ==========================
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ] && ! [[ " ${skip_stages} " =~ [[:space:]]1[[:space:]] ]]; then
log "Stage 1: Data preparation for data/${train_set}, data/${valid_set}, etc."
# [Task dependent] Need to create data.sh for new corpus
local/data.sh ${local_data_opts}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ] && ! [[ " ${skip_stages} " =~ [[:space:]]2[[:space:]] ]]; then
if "${skip_train}"; then
_dsets="${test_sets}"
else
_dsets="${train_set} ${valid_set} ${test_sets}"
fi
if "${use_speech}"; then
if [ "${feats_type}" = raw ]; then
log "Stage 2: Format wav.scp: data/ -> ${data_audio}"
# ====== Recreating "wav.scp" ======
# Kaldi-wav.scp, which can describe the file path with unix-pipe, like "cat /some/path |",
# shouldn't be used in training process.
# "format_wav_scp.sh" dumps such pipe-style-wav to real audio file
# and it can also change the audio-format and sampling rate.
# If nothing is need, then format_wav_scp.sh does nothing:
# i.e. the input file format and rate is same as the output.
for dset in ${_dsets}; do
echo $dset
for _dir in "data/${dset}/speech/"*; do
echo ${_dir}
if [ -d "${_dir}" ]; then
echo "${_dir}" # your processing here
utils/copy_data_dir.sh --validate_opts --non-print "${_dir}" "${data_audio}/$(basename ${_dir})/${dset}/"
scripts/audio/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
--audio-format "${audio_format}" --fs "${fs}" \
"${_dir}/wav.scp" "${data_audio}/$(basename ${_dir})/${dset}"
echo "${feats_type}" > "${data_audio}/$(basename ${_dir})/${dset}/feats_type"
echo "${audio_format}" > "${data_audio}/$(basename ${_dir})/${dset}/audio_format"
fi
done
done
else
log "Error: not supported: --feats_type ${feats_type}"
exit 2
fi
fi
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ] && ! [[ " ${skip_stages} " =~ [[:space:]]3[[:space:]] ]]; then
if "${use_speech}"; then
log "Stage 3a: Perform Kmeans using ${kmeans_feature_type} features"
if ! "${learn_kmeans}"; then
kmeans_opts+="--skip_stages 2"
fi
for _dir in "data/${dset}/speech/"*; do
if [ -d "${_dir}" ]; then
scripts/feats/perform_kmeans.sh \
--stage 1 --stop-stage 4 \
--train_set "${train_set}" \
--dev_set "${valid_set}" \
--other_sets "${test_sets}" \
--datadir "${data_audio}/$(basename ${_dir})" \
--featdir "${data_extract}/$(basename ${_dir})" \
--audio_format "${audio_format}" \
--feature_type "${kmeans_feature_type}" \
--layer "${layer}" \
--feature_conf "${kmeans_feature_conf}" \
--km_dir "${km_dir}" \
--portion "${portion}" \
--nclusters "${nclusters}" \
--storage_save_mode ${storage_save_mode} \
--use_gpu true \
--nj ${nj} \
--cpu_cmd "${train_cmd}" \
--cuda_cmd "${cuda_cmd}" \
${kmeans_opts}
fi
done
_suf=
if [ -n "${layer}" ]; then
_suf="layer${layer}/"
fi
for dset in "${train_set}" "${valid_set}" ${test_sets}; do
for _dir in "data/${dset}/speech/"*; do
if [ -d "${_dir}" ]; then
utils/copy_data_dir.sh "${data_audio}/$(basename ${_dir})/${dset}" "${data_feats}/${dset}/speech/$(basename ${_dir})"
cat "${data_extract}/$(basename ${_dir})/${kmeans_feature_type}/${_suf}${dset}/pseudo_labels_km${nclusters}.txt" \
> "${data_feats}/${dset}/speech/$(basename ${_dir})/token"
fi
done
done
fi
if "${use_text}"; then
for dset in "${train_set} ${valid_set}" ${test_sets}; do
for _dir in "data/${dset}/text/"*; do
if [ -d "${_dir}" ]; then
echo "${data_feats}/${dset}/text/$(basename ${_dir})"
mkdir -p "${data_feats}/${dset}/text/$(basename ${_dir})"
cp "${_dir}/text" "${data_feats}/${dset}/text/$(basename ${_dir})/"
fi
done
done
fi
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ] && ! [[ " ${skip_stages} " =~ [[:space:]]4[[:space:]] ]]; then
log "Stage 4a: Data filtering: ${data_feats}/org -> ${data_feats}"
# NOTE(kamo): Not applying to test_sets to keep original data
if "${use_speech}" && "${use_text}"; then
for dset in "${train_set}" "${valid_set}" ${test_sets}; do
echo $dset
python3 local/prepare_lm_data.py --path ${data_feats}/${dset}
done
fi
# Create testset
for _dset in ${test_sets}; do
python3 local/prepare_lm_test.py --test_file "${data_feats}/${_dset}/lm_text" --path "${data_feats}/${_dset}"
done
if [ "${token_type}" = bpe ]; then
# Create bpe_train_text
python3 local/prepare_bpe_text.py -i "${data_feats}/${train_set}/lm_text" -o ${bpe_train_text}
fi
# shellcheck disable=SC2002
cat "${data_feats}/${train_set}/lm_text" | awk ' { if( NF != 1 ) print $0; } ' > "${data_feats}/lm_train.txt"
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ] && ! [[ " ${skip_stages} " =~ [[:space:]]5[[:space:]] ]]; then
if [ "${token_type}" = bpe ]; then
log "Stage 5: Generate token_list from ${bpe_train_text} using BPE"
mkdir -p "${bpedir}"
# shellcheck disable=SC2002
cat ${bpe_train_text} | cut -f 2- -d" " > "${bpedir}"/train.txt
if [ -n "${bpe_nlsyms}" ]; then
if test -f "${bpe_nlsyms}"; then
bpe_nlsyms_list=$(awk '{print $1}' ${bpe_nlsyms} | paste -s -d, -)
_opts_spm="--user_defined_symbols=${bpe_nlsyms_list}"
else
_opts_spm="--user_defined_symbols=${bpe_nlsyms}"
fi
else
_opts_spm=""
fi
spm_train \
--input="${bpedir}"/train.txt \
--vocab_size="${nbpe}" \
--model_type="${bpemode}" \
--model_prefix="${bpeprefix}" \
--character_coverage=${bpe_char_cover} \
--input_sentence_size="${bpe_input_sentence_size}" \
${_opts_spm}
{
echo "${blank}"
echo "${oov}"
# Remove <unk>, <s>, </s> from the vocabulary
<"${bpeprefix}".vocab awk '{ if( NR != 1 && NR != 2 && NR != 3 ){ print $1; } }'
echo "${sos_eos}"
} > "${token_list}"
elif [ "${token_type}" = char ]; then
log "Stage 5: Generate character level token_list from ${lm_train_text}"
_opts="--non_linguistic_symbols ${nlsyms_txt}"
# The first symbol in token_list must be "<blank>" and the last must be also sos/eos:
# 0 is reserved for CTC-blank for ASR and also used as ignore-index in the other task
${python} -m espnet2.bin.tokenize_text \
--token_type "${token_type}" \
--input "${data_feats}/lm_train.txt" --output "${token_list}" ${_opts} \
--field 2- \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--write_vocabulary true \
--add_symbol "${blank}:0" \
--add_symbol "${oov}:1" \
--add_symbol "${sos_eos}:-1"
else
log "Error: not supported --token_type '${token_type}'"
exit 2
fi
# check -- remove long sentences?
fi
# ========================== Data preparation is done here. ==========================
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ] && ! [[ " ${skip_stages} " =~ [[:space:]]6[[:space:]] ]]; then
log "Stage 6: LM collect stats: train_set=${data_feats}/lm_train.txt, dev_set=${lm_dev_text}"
_opts=
if [ -n "${lm_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.lm_train --print_config --optim adam
_opts+="--config ${lm_config} "
fi
# 1. Split the key file
_logdir="${lm_stats_dir}/logdir"
mkdir -p "${_logdir}"
# Get the minimum number among ${nj} and the number lines of input files
_nj=$(min "${nj}" "$(<${data_feats}/lm_train.txt wc -l)" "$(<${lm_dev_text} wc -l)")
key_file="${data_feats}/lm_train.txt"
split_scps=""
for n in $(seq ${_nj}); do
split_scps+=" ${_logdir}/train.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
key_file="${lm_dev_text}"
split_scps=""
for n in $(seq ${_nj}); do
split_scps+=" ${_logdir}/dev.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Generate run.sh
log "Generate '${lm_stats_dir}/run.sh'. You can resume the process from stage 6 using this script"
mkdir -p "${lm_stats_dir}"; echo "${run_args} --stage 6 \"\$@\"; exit \$?" > "${lm_stats_dir}/run.sh"; chmod +x "${lm_stats_dir}/run.sh"
# 3. Submit jobs
log "LM collect-stats started... log: '${_logdir}/stats.*.log'"
# NOTE: --*_shape_file doesn't require length information if --batch_type=unsorted,
# but it's used only for deciding the sample ids.
# shellcheck disable=SC2046,SC2086
${train_cmd} JOB=1:"${_nj}" "${_logdir}"/stats.JOB.log \
${python} -m espnet2.bin.lm_train \
--collect_stats true \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${token_type}"\
--token_list "${token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--train_data_path_and_name_and_type "${data_feats}/lm_train.txt,text,text" \
--valid_data_path_and_name_and_type "${lm_dev_text},text,text" \
--train_shape_file "${_logdir}/train.JOB.scp" \
--valid_shape_file "${_logdir}/dev.JOB.scp" \
--output_dir "${_logdir}/stats.JOB" \
${_opts} ${lm_args} || { cat $(grep -l -i error "${_logdir}"/stats.*.log) ; exit 1; }
# 4. Aggregate shape files
_opts=
for i in $(seq "${_nj}"); do
_opts+="--input_dir ${_logdir}/stats.${i} "
done
# shellcheck disable=SC2086
${python} -m espnet2.bin.aggregate_stats_dirs ${_opts} --output_dir "${lm_stats_dir}"
# Append the num-tokens at the last dimensions. This is used for batch-bins count
<"${lm_stats_dir}/train/text_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${lm_stats_dir}/train/text_shape.${token_type}"
<"${lm_stats_dir}/valid/text_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${lm_stats_dir}/valid/text_shape.${token_type}"
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ] && ! [[ " ${skip_stages} " =~ [[:space:]]7[[:space:]] ]]; then
log "Stage 7: LM Training: train_set=${data_feats}/lm_train.txt, dev_set=${lm_dev_text}"
_opts=
if [ -n "${lm_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.lm_train --print_config --optim adam
_opts+="--config ${lm_config} "
fi
if [ "${num_splits_lm}" -gt 1 ]; then
# If you met a memory error when parsing text files, this option may help you.
# The corpus is split into subsets and each subset is used for training one by one in order,
# so the memory footprint can be limited to the memory required for each dataset.
_split_dir="${lm_stats_dir}/splits${num_splits_lm}"
if [ ! -f "${_split_dir}/.done" ]; then
rm -f "${_split_dir}/.done"
${python} -m espnet2.bin.split_scps \
--scps "${data_feats}/lm_train.txt" "${lm_stats_dir}/train/text_shape.${token_type}" \
--num_splits "${num_splits_lm}" \
--output_dir "${_split_dir}"
touch "${_split_dir}/.done"
else
log "${_split_dir}/.done exists. Spliting is skipped"
fi
_opts+="--train_data_path_and_name_and_type ${_split_dir}/lm_train.txt,text,text "
_opts+="--train_shape_file ${_split_dir}/text_shape.${token_type} "
_opts+="--multiple_iterator true "
else
_opts+="--train_data_path_and_name_and_type ${data_feats}/lm_train.txt,text,text "
_opts+="--train_shape_file ${lm_stats_dir}/train/text_shape.${token_type} "
fi
# NOTE(kamo): --fold_length is used only if --batch_type=folded and it's ignored in the other case
log "Generate '${lm_exp}/run.sh'. You can resume the process from stage 7 using this script"
mkdir -p "${lm_exp}"; echo "${run_args} --stage 7 \"\$@\"; exit \$?" > "${lm_exp}/run.sh"; chmod +x "${lm_exp}/run.sh"
log "LM training started... log: '${lm_exp}/train.log'"
if echo "${cuda_cmd}" | grep -e queue.pl -e queue-freegpu.pl &> /dev/null; then
# SGE can't include "/" in a job name
jobname="$(basename ${lm_exp})"
else
jobname="${lm_exp}/train.log"
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.launch \
--cmd "${cuda_cmd} --name ${jobname}" \
--log "${lm_exp}"/train.log \
--ngpu "${ngpu}" \
--num_nodes "${num_nodes}" \
--init_file_prefix "${lm_exp}"/.dist_init_ \
--multiprocessing_distributed true -- \
${python} -m espnet2.bin.lm_train \
--ngpu "${ngpu}" \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${token_type}"\
--token_list "${token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--valid_data_path_and_name_and_type "${lm_dev_text},text,text" \
--valid_shape_file "${lm_stats_dir}/valid/text_shape.${token_type}" \
--fold_length "${lm_fold_length}" \
--resume true \
--output_dir "${lm_exp}" \
${_opts} ${lm_args}
fi
if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ] && ! [[ " ${skip_stages} " =~ [[:space:]]8[[:space:]] ]]; then
if [ -f ${lm_test_text_textlm} ]; then
log "Stage 8a: Calc perplexity for textlm: ${lm_test_text_textlm}"
_opts=
_output_dir="${lm_exp}/perplexity_test_textlm/$(basename ${lm_test_text_textlm})"
_ngpu=1 # always use a single GPU since the data is usually small
log "Perplexity calculation started... log: '${_output_dir}/lm_calc_perplexity.log'"
# shellcheck disable=SC2086
${cuda_cmd} --gpu "${_ngpu}" "${lm_exp}"/perplexity_test_textlm/lm_calc_perplexity.log \
${python} -m espnet2.bin.lm_calc_perplexity \
--ngpu "${_ngpu}" \
--data_path_and_name_and_type "${lm_test_text_textlm},text,text" \
--train_config "${lm_exp}"/config.yaml \
--model_file "${lm_exp}/${inference_lm}" \
--output_dir "${_output_dir}" \
${_opts}
log "PPL: ${lm_test_text_textlm}: $(cat ${_output_dir}/ppl)"
fi
if [ -f ${lm_test_text_speechlm} ]; then
log "Stage 8b: Calc perplexity for unitlm: ${lm_test_text_speechlm}"
_opts=
_output_dir="${lm_exp}/perplexity_test_unitlm/$(basename ${lm_test_text_speechlm})"
_ngpu=1
log "Perplexity calculation started... log: '${_output_dir}/lm_calc_perplexity.log'"
# shellcheck disable=SC2086
${cuda_cmd} --gpu "${_ngpu}" "${lm_exp}"/perplexity_test_unitlm/lm_calc_perplexity.log \
${python} -m espnet2.bin.lm_calc_perplexity \
--ngpu "${_ngpu}" \
--data_path_and_name_and_type "${lm_test_text_speechlm},text,text" \
--train_config "${lm_exp}"/config.yaml \
--model_file "${lm_exp}/${inference_lm}" \
--output_dir "${_output_dir}" \
${_opts}
log "PPL: ${lm_test_text_speechlm}: $(cat ${_output_dir}/ppl)"
fi
fi
if [ ${stage} -le 9 ] && [ ${stop_stage} -ge 9 ] && ! [[ " ${skip_stages} " =~ [[:space:]]9[[:space:]] ]]; then
log "Stage 9: LM decoding for ASR: ${lm_exp}"
if ${gpu_inference}; then
_cmd="${cuda_cmd}"
_ngpu=1
else
_cmd="${decode_cmd}"
_ngpu=0
fi
_opts=
if [ -n "${lm_inference_asr_config}" ]; then
_opts+="--config ${lm_inference_asr_config} "
fi
# [ToDo] adapting to org/dev
# if "${eval_valid_set}"; then
# _dsets="org/${valid_set} ${test_sets}"
# else
# _dsets="${test_sets}"
# fi
_dsets="${test_sets}"
for dset in ${_dsets}; do
_dir="${lm_exp}/decode_test_asr/$(basename ${lm_inference_asr_config} .yaml)/$(basename $dset)"
_logdir="${_dir}/logdir"
mkdir -p "${_logdir}"
lm_test_text_asr="${data_feats}/${dset}/text.asr"
# 1. Split the key file
key_file=${lm_test_text_asr}
split_scps=""
_nj=$(min "${inference_nj}" "$(<${key_file} wc -l)")
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Submit decoding jobs
log "Decoding started... log: '${_logdir}/lm_inference.*.log'"
rm -f "${_logdir}/*.log"
# shellcheck disable=SC2046,SC2086
${_cmd} --gpu "${_ngpu}" JOB=1:"${_nj}" "${_logdir}"/lm_inference.JOB.log \
${python} -m espnet2.bin.lm_inference \
--batch_size ${batch_size} \
--ngpu "${_ngpu}" \
--data_path_and_name_and_type "${lm_test_text_asr},text,text" \
--key_file "${_logdir}"/keys.JOB.scp \
--output_dir "${_logdir}"/output.JOB \
--token_type "${token_type}" \
--bpemodel "${bpemodel}" \
--lm_train_config "${lm_exp}"/config.yaml \
--lm_file "${lm_exp}"/${inference_lm} \
${_opts} ${inference_args} || { cat $(grep -l -i error "${_logdir}"/lm_inference.*.log) ; exit 1; }
# --log_level "DEBUG"
# 3. Concatenate output files from each job
# shellcheck disable=SC2068
for f in token token_int score text; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
# 4. Postprocess and score
_scoredir="${_dir}/score_wer"
mkdir -p "${_scoredir}"
if "${split_asr}"; then
python3 local/postprocess_asr_split.py \
--input ${_dir}/text \
--output ${_scoredir}/hyp.trn \
--sos "<generatetext>" \
--prefix "asr_"
python3 local/postprocess_asr_split.py \
--input ${data_feats}/${dset}/lm_text \
--output ${_scoredir}/ref.trn \
--sos "<generatetext>" \
--prefix "asr_"
else
python3 local/postprocess.py \
--input ${_dir}/text \
--output ${_scoredir}/hyp.trn \
--sos "<generatetext>" \
--prefix "asr_"
python3 local/postprocess.py \
--input ${data_feats}/${dset}/lm_text \
--output ${_scoredir}/ref.trn \
--sos "<generatetext>" \
--prefix "asr_"
fi
sclite -r ${_scoredir}/ref.trn trn \
-h ${_scoredir}/hyp.trn trn \
-i rm -o all stdout > ${_scoredir}/result.txt
done
# Show results in Markdown syntax
scripts/utils/show_asr_result.sh "${lm_exp}" > "${lm_exp}"/RESULTS.md
cat "${lm_exp}"/RESULTS.md
fi
if [ ${stage} -le 10 ] && [ ${stop_stage} -ge 10 ] && ! [[ " ${skip_stages} " =~ [[:space:]]10[[:space:]] ]]; then
if [ -f ${lm_test_text_tts} ]; then
log "Stage 10: LM decoding for TTS: ${lm_test_text_tts}"
_dir="${lm_exp}/decode_test_tts/$(basename ${lm_test_text_tts})"
_logdir="${_dir}/logdir"
mkdir -p "${_logdir}"
if ${gpu_inference}; then
_cmd="${cuda_cmd}"
_ngpu=1
else
_cmd="${decode_cmd}"
_ngpu=0
fi
_opts=
if [ -n "${lm_inference_tts_config}" ]; then
_opts+="--config ${lm_inference_tts_config} "
fi
# 1. Split the key file
key_file=${lm_test_text_tts}
split_scps=""
_nj=$(min "${inference_nj}" "$(<${key_file} wc -l)")
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Submit decoding jobs
log "Decoding started... log: '${_logdir}/lm_inference.*.log'"
rm -f "${_logdir}/*.log"
# shellcheck disable=SC2046,SC2086
${_cmd} --gpu "${_ngpu}" JOB=1:"${_nj}" "${_logdir}"/lm_inference.JOB.log \
${python} -m espnet2.bin.lm_inference \
--batch_size ${batch_size} \
--ngpu "${_ngpu}" \
--data_path_and_name_and_type "${lm_test_text_tts},text,text" \
--key_file "${_logdir}"/keys.JOB.scp \
--output_dir "${_logdir}"/output.JOB \
--token_type "${token_type}" \
--bpemodel "${bpemodel}" \
--lm_train_config "${lm_exp}"/config.yaml \
--lm_file "${lm_exp}"/${inference_lm} \
${_opts} ${inference_args} || { cat $(grep -l -i error "${_logdir}"/lm_inference.*.log) ; exit 1; }
# 3. Concatenate output files from each job
# shellcheck disable=SC2068
for f in token token_int score text; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
# 4. Postprocess
_scoredir="${_dir}/score_tts"
mkdir -p "${_scoredir}"
python3 local/postprocess.py \
--input ${_dir}/text \
--output ${_scoredir}/hyp.trn \
--sos "<generatespeech>" \
--prefix "tts_"
# Generate tokens for speech generation
python3 local/postprocess_speech.py \
--input ${_scoredir}/hyp.trn \
--output ${_scoredir}/hyp.tok \
--prefix "tts_"
fi
fi
packed_model="${lm_exp}/${lm_exp##*/}_${inference_lm%.*}.zip"
if [ ${stage} -le 11 ] && [ ${stop_stage} -ge 11 ] && ! [[ " ${skip_stages} " =~ [[:space:]]11[[:space:]] ]]; then
log "Stage 11: Pack model: ${packed_model}"
_opts=
if [ "${token_type}" = bpe ]; then
_opts+="--option ${bpemodel} "
fi
if [ "${nlsyms_txt}" != none ]; then
_opts+="--option ${nlsyms_txt} "
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.pack asr \
--lm_train_config "${lm_exp}"/config.yaml \
--lm_file "${lm_exp}"/"${inference_lm}" \
${_opts} \
--option "${lm_exp}"/images \
--outpath "${packed_model}"
fi
if [ ${stage} -le 12 ] && [ ${stop_stage} -ge 12 ] && ! [[ " ${skip_stages} " =~ [[:space:]]12[[:space:]] ]]; then
log "Stage 12: Upload model to Zenodo: ${packed_model}"
log "Warning: Upload model to Zenodo will be deprecated. We encourage to use Hugging Face"
# To upload your model, you need to do:
# 1. # to Zenodo: https://zenodo.org/
# 2. Create access token: https://zenodo.org/account/settings/applications/tokens/new/
# 3. Set your environment: % export ACCESS_TOKEN="<your token>"
if command -v git &> /dev/null; then
_creator_name="$(git config user.name)"
_checkout="
git checkout $(git show -s --format=%H)"
else
_creator_name="$(whoami)"
_checkout=""
fi
# /some/where/espnet/egs2/foo/asr1/ -> foo/asr1
_task="$(pwd | rev | cut -d/ -f2 | rev)"
# foo/asr1 -> foo
_corpus="${_task%/*}"
_model_name="${_creator_name}/${_corpus}_$(basename ${packed_model} .zip)"
# Generate description file
cat << EOF > "${lm_exp}"/description
This model was trained by ${_creator_name} using ${_task} recipe in <a href="https://github.com/espnet/espnet/">espnet</a>.
<p> </p>
<ul>
<li><strong>Python API</strong><pre><code class="language-python">See https://github.com/espnet/espnet_model_zoo</code></pre></li>
<li><strong>Evaluate in the recipe</strong><pre>
<code class="language-bash">git clone https://github.com/espnet/espnet
cd espnet${_checkout}
pip install -e .
cd $(pwd | rev | cut -d/ -f1-3 | rev)
./run.sh --skip_data_prep false --skip_train true --download_model ${_model_name}</code>
</pre></li>