-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathtrain_semi.py
374 lines (325 loc) · 16.9 KB
/
train_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import argparse
import random
import time
import warnings
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models
from tensorboardX import SummaryWriter
from utils import *
from dataset.imbalance_cifar import SemiSupervisedImbalanceCIFAR10
from dataset.imbalance_svhn import SemiSupervisedImbalanceSVHN
from losses import LDAMLoss, FocalLoss
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'svhn'])
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet32', choices=model_names,
help='model architecture: ' + ' | '.join(model_names))
parser.add_argument('--loss_type', default="CE", type=str, choices=['CE', 'Focal', 'LDAM'])
parser.add_argument('--imb_type', default="exp", type=str, help='imbalance type')
parser.add_argument('--imb_factor', default=0.01, type=float, help='imbalance factor')
parser.add_argument('--imb_factor_unlabel', default=0.01, type=float, help='imbalance factor for unlabeled data')
parser.add_argument('--train_rule', default='None', type=str,
choices=['None', 'Resample', 'Reweight', 'DRW'])
parser.add_argument('--rand_number', default=0, type=int, help='fix random number for data sampling')
parser.add_argument('--exp_str', default='semi', type=str, help='(additional) name to indicate experiment')
parser.add_argument('--gpu', default=0, type=int, help='GPU id to use')
parser.add_argument('--pretrained_model', type=str, default='')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N')
parser.add_argument('--epochs', default=200, type=int, metavar='N')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M')
parser.add_argument('--wd', '--weight-decay', default=2e-4, type=float, metavar='W', dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training.')
parser.add_argument('--root_log', type=str, default='log')
parser.add_argument('--root_model', type=str, default='./checkpoint')
best_acc1 = 0
def main():
args = parser.parse_args()
args.store_name = '_'.join([args.dataset, args.arch, args.loss_type, args.train_rule, args.imb_type,
str(args.imb_factor), str(args.imb_factor_unlabel), args.exp_str])
prepare_folders(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, which can slow down training considerably! '
'You may see unexpected behavior when restarting from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely disable data parallelism.')
main_worker(args.gpu, args)
def main_worker(gpu, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print(f"Use GPU: {args.gpu} for training")
print(f"===> Creating model '{args.arch}'")
if args.dataset in {'cifar10', 'svhn'}:
num_classes = 10
else:
raise NotImplementedError
use_norm = True if args.loss_type == 'LDAM' else False
model = models.__dict__[args.arch](num_classes=num_classes, use_norm=use_norm)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
mean = [0.4914, 0.4822, 0.4465] if args.dataset.startswith('cifar') else [.5, .5, .5]
std = [0.2023, 0.1994, 0.2010] if args.dataset.startswith('cifar') else [.5, .5, .5]
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
if args.dataset == 'cifar10':
train_dataset = SemiSupervisedImbalanceCIFAR10(
root=args.data_path,
imb_type=args.imb_type, imb_factor=args.imb_factor, unlabel_imb_factor=args.imb_factor_unlabel,
rand_number=args.rand_number, train=True, download=True, transform=transform_train
)
val_dataset = datasets.CIFAR10(root=args.data_path,
train=False, download=True, transform=transform_val)
train_sampler = None
if args.train_rule == 'Resample':
train_sampler = ImbalancedDatasetSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=100, shuffle=False,
num_workers=args.workers, pin_memory=True)
elif args.dataset == 'svhn':
train_dataset = SemiSupervisedImbalanceSVHN(
root=args.data_path,
imb_type=args.imb_type, imb_factor=args.imb_factor, unlabel_imb_factor=args.imb_factor_unlabel,
rand_number=args.rand_number, split='train', download=True, transform=transform_train
)
val_dataset = datasets.SVHN(root=args.data_path,
split='test', download=True, transform=transform_val)
train_sampler = None
if args.train_rule == 'Resample':
train_sampler = ImbalancedDatasetSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=100, shuffle=False,
num_workers=args.workers, pin_memory=True)
else:
raise NotImplementedError(f"Dataset {args.dataset} is not supported!")
# evaluate only
if args.evaluate:
assert args.resume, 'Specify a trained model using [args.resume]'
checkpoint = torch.load(args.resume, map_location=torch.device(f'cuda:{str(args.gpu)}'))
model.load_state_dict(checkpoint['state_dict'])
print(f"===> Checkpoint '{args.resume}' loaded, testing...")
validate(val_loader, model, nn.CrossEntropyLoss(), 0, args)
return
if args.resume:
if os.path.isfile(args.resume):
print(f"===> Loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume, map_location=torch.device(f'cuda:{str(args.gpu)}'))
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print(f"===> Loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
raise ValueError(f"No checkpoint found at '{args.resume}'")
if args.pretrained_model:
checkpoint = torch.load(args.pretrained_model, map_location=torch.device(f'cuda:{str(args.gpu)}'))
if 'moco_ckpt' not in args.pretrained_model:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
if 'linear' not in k and 'fc' not in k:
new_state_dict[k] = v
model.load_state_dict(new_state_dict, strict=False)
print(f'===> Pretrained weights found in total: [{len(list(new_state_dict.keys()))}]')
else:
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
# remove prefix
state_dict[k[len("module.encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
if use_norm:
assert set(msg.missing_keys) == {"fc.weight"}
else:
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print(f'===> Pre-trained model loaded: {args.pretrained_model}')
cudnn.benchmark = True
if args.dataset.startswith(('cifar', 'svhn')):
cls_num_list = train_dataset.get_cls_num_list()
print('cls num list:')
print(cls_num_list)
args.cls_num_list = cls_num_list
# init log for training
log_training = open(os.path.join(args.root_log, args.store_name, 'log_train.csv'), 'w')
log_testing = open(os.path.join(args.root_log, args.store_name, 'log_test.csv'), 'w')
with open(os.path.join(args.root_log, args.store_name, 'args.txt'), 'w') as f:
f.write(str(args))
tf_writer = SummaryWriter(log_dir=os.path.join(args.root_log, args.store_name))
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
if args.train_rule == 'Reweight':
beta = 0.9999
effective_num = 1.0 - np.power(beta, cls_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
elif args.train_rule == 'DRW':
idx = epoch // 160
betas = [0, 0.9999]
effective_num = 1.0 - np.power(betas[idx], cls_num_list)
per_cls_weights = (1.0 - betas[idx]) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
else:
per_cls_weights = None
if args.loss_type == 'CE':
criterion = nn.CrossEntropyLoss(weight=per_cls_weights).cuda(args.gpu)
elif args.loss_type == 'LDAM':
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30, weight=per_cls_weights).cuda(args.gpu)
elif args.loss_type == 'Focal':
criterion = FocalLoss(weight=per_cls_weights, gamma=1).cuda(args.gpu)
else:
warnings.warn('Loss type is not listed')
return
train(train_loader, model, criterion, optimizer, epoch, args, log_training, tf_writer)
acc1 = validate(val_loader, model, criterion, epoch, args, log_testing, tf_writer)
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
tf_writer.add_scalar('acc/test_top1_best', best_acc1, epoch)
output_best = 'Best Prec@1: %.3f\n' % best_acc1
print(output_best)
log_testing.write(output_best + '\n')
log_testing.flush()
save_checkpoint(args, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch, args, log, tf_writer):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
model.train()
end = time.time()
for i, (inputs, target) in enumerate(train_loader):
data_time.update(time.time() - end)
inputs = inputs.cuda()
target = target.cuda()
output = model(inputs)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'] * 0.1))
print(output)
log.write(output + '\n')
log.flush()
tf_writer.add_scalar('loss/train', losses.avg, epoch)
tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
def validate(val_loader, model, criterion, epoch, args, log=None, tf_writer=None, flag='val'):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
all_preds = []
all_targets = []
with torch.no_grad():
end = time.time()
for i, (inputs, target) in enumerate(val_loader):
inputs = inputs.cuda()
target = target.cuda()
output = model(inputs)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
batch_time.update(time.time() - end)
end = time.time()
_, pred = torch.max(output, 1)
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
if i % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(output)
cf = confusion_matrix(all_targets, all_preds).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
output = ('{flag} Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(flag=flag, top1=top1, top5=top5, loss=losses))
out_cls_acc = '%s Class Accuracy: %s' % (
flag, (np.array2string(cls_acc, separator=',', formatter={'float_kind': lambda x: "%.3f" % x})))
print(output)
print(out_cls_acc)
if log is not None:
log.write(output + '\n')
log.write(out_cls_acc + '\n')
log.flush()
if tf_writer is not None:
tf_writer.add_scalar('loss/test_' + flag, losses.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top5', top5.avg, epoch)
tf_writer.add_scalars('acc/test_' + flag + '_cls_acc', {str(i): x for i, x in enumerate(cls_acc)}, epoch)
return top1.avg
if __name__ == '__main__':
main()