forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworkspace.py
779 lines (619 loc) · 24.7 KB
/
workspace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
## @package workspace
# Module caffe2.python.workspace
import collections
import contextlib
from google.protobuf.message import Message
from multiprocessing import Process
import os
from collections import defaultdict
import logging
import numpy as np
from past.builtins import basestring
import shutil
import socket
import tempfile
from caffe2.proto import caffe2_pb2
from caffe2.python import scope, utils
from caffe2.python.lazy import TriggerLazyImport
import caffe2.python._import_c_extension as C
logger = logging.getLogger(__name__)
Blobs = C.blobs
ResetBlob = C.reset_blob
CreateBlob = C.create_blob
CurrentWorkspace = C.current_workspace
DeserializeBlob = C.deserialize_blob
GlobalInit = C.global_init
HasBlob = C.has_blob
RegisteredOperators = C.registered_operators
SerializeBlob = C.serialize_blob
SwitchWorkspace = C.switch_workspace
RootFolder = C.root_folder
Workspaces = C.workspaces
BenchmarkNet = C.benchmark_net
BenchmarkNetOnce = C.benchmark_net_once
GetStats = C.get_stats
CreateOfflineTensor = C.create_offline_tensor
operator_tracebacks = defaultdict(dict)
is_asan = C.is_asan
has_fbgemm = C.has_fbgemm
has_cuda_support = C.has_cuda_support
has_hip_support = C.has_hip_support
has_gpu_support = C.has_gpu_support
if has_cuda_support:
GpuDeviceType = caffe2_pb2.CUDA
NumCudaDevices = C.num_cuda_devices
# This is a duplicate of NumCudaDevices. Remove
# NumCudaDevices once replaced everywhere in the code
NumGpuDevices = C.num_cuda_devices
GetCUDAVersion = C.get_cuda_version
GetCuDNNVersion = C.get_cudnn_version
def GetGpuPeerAccessPattern():
return np.asarray(C.get_cuda_peer_access_pattern())
GetDeviceProperties = C.get_device_properties
GetGPUMemoryInfo = C.get_gpu_memory_info
else:
# pyre-fixme[9]: incompatible type assignment
NumCudaDevices = lambda: 0 # noqa
# pyre-fixme[9]: incompatible type assignment
GetCUDAVersion = lambda: 0 # noqa
# pyre-fixme[9]: incompatible type assignment
GetCuDNNVersion = lambda: 0 # noqa
if has_hip_support:
GpuDeviceType = caffe2_pb2.HIP
# pyre-fixme[9]: incompatible type assignment
NumGpuDevices = C.num_hip_devices
GetHIPVersion = C.get_hip_version
def GetGpuPeerAccessPattern():
return np.asarray(C.get_hip_peer_access_pattern())
GetDeviceProperties = C.get_device_properties
GetGPUMemoryInfo = C.get_gpu_memory_info
if not has_gpu_support:
# setting cuda as the default GpuDeviceType as some tests
# like core, scope tests use GpuDeviceType even without gpu support
GpuDeviceType = caffe2_pb2.CUDA
# pyre-fixme[9]: incompatible type assignment
NumGpuDevices = lambda: 0 # noqa
GetDeviceProperties = lambda x: None # noqa
GetGpuPeerAccessPattern = lambda: np.array([]) # noqa
# pyre-fixme[9]: incompatible type assignment
GetGPUMemoryInfo = lambda: None # noqa
IsNUMAEnabled = C.is_numa_enabled
GetNumNUMANodes = C.get_num_numa_nodes
GetBlobNUMANode = C.get_blob_numa_node
GetBlobSizeBytes = C.get_blob_size_bytes
def FillRandomNetworkInputs(net, input_dims, input_types):
C.fill_random_network_inputs(net.Proto().SerializeToString(), input_dims, input_types)
def _GetFreeFlaskPort():
"""Get a free flask port."""
# We will prefer to use 5000. If not, we will then pick a random port.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
result = sock.connect_ex(('127.0.0.1', 5000))
if result == 0:
return 5000
else:
s = socket.socket()
s.bind(('', 0))
port = s.getsockname()[1]
s.close()
# Race condition: between the interval we close the socket and actually
# start a mint process, another process might have occupied the port. We
# don't do much here as this is mostly for convenience in research
# rather than 24x7 service.
return port
def StartMint(root_folder=None, port=None):
"""Start a mint instance.
TODO(Yangqing): this does not work well under ipython yet. According to
https://github.com/ipython/ipython/issues/5862
writing up some fix is a todo item.
"""
from caffe2.python.mint import app
if root_folder is None:
# Get the root folder from the current workspace
root_folder = C.root_folder()
if port is None:
port = _GetFreeFlaskPort()
process = Process(
target=app.main,
args=(
['-p', str(port), '-r', root_folder],
)
)
process.start()
print('Mint running at http://{}:{}'.format(socket.getfqdn(), port))
return process
def StringifyProto(obj):
"""Stringify a protocol buffer object.
Inputs:
obj: a protocol buffer object, or a Pycaffe2 object that has a Proto()
function.
Outputs:
string: the output protobuf string.
Raises:
AttributeError: if the passed in object does not have the right attribute.
"""
if isinstance(obj, basestring):
return obj
else:
if isinstance(obj, Message):
# First, see if this object is a protocol buffer, which we can
# simply serialize with the SerializeToString() call.
return obj.SerializeToString()
elif hasattr(obj, 'Proto'):
return obj.Proto().SerializeToString()
else:
raise ValueError("Unexpected argument to StringifyProto of type " +
type(obj).__name__)
def ResetWorkspace(root_folder=None):
if root_folder is None:
# Reset the workspace, but keep the current root folder setting.
return C.reset_workspace(C.root_folder())
else:
if not os.path.exists(root_folder):
os.makedirs(root_folder)
return C.reset_workspace(root_folder)
def CreateNet(net, overwrite=False, input_blobs=None):
TriggerLazyImport()
if input_blobs is None:
input_blobs = []
for input_blob in input_blobs:
C.create_blob(input_blob)
return CallWithExceptionIntercept(
C.create_net,
C.Workspace.current._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net), overwrite,
)
def Predictor(init_net, predict_net):
return C.Predictor(StringifyProto(init_net), StringifyProto(predict_net))
def GetOperatorCost(operator, blobs):
return C.get_operator_cost(StringifyProto(operator), blobs)
def RunOperatorOnce(operator):
return C.run_operator_once(StringifyProto(operator))
def RunOperatorMultiple(operator, num_runs):
return C.run_operator_multiple(StringifyProto(operator), num_runs)
def RunOperatorsOnce(operators):
for op in operators:
success = RunOperatorOnce(op)
if not success:
return False
return True
def ClearGlobalNetObserver():
return C.clear_global_net_observer()
def CallWithExceptionIntercept(func, op_id_fetcher, net_name, *args, **kwargs):
try:
return func(*args, **kwargs)
except Exception:
op_id = op_id_fetcher()
net_tracebacks = operator_tracebacks.get(net_name, None)
logger.warning(
'Original python traceback for operator `{}` in network '
'`{}` in exception above (most recent call last):'.format(
op_id, net_name))
if net_tracebacks and op_id in net_tracebacks:
tb = net_tracebacks[op_id]
for line in reversed(tb):
logger.warning(' File "{}", line {}, in {}'.format(
line[0], line[1], line[2]))
raise
def RunNetOnce(net):
return CallWithExceptionIntercept(
C.run_net_once,
C.Workspace.current._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net),
)
def RunNet(name, num_iter=1, allow_fail=False):
"""Runs a given net.
Inputs:
name: the name of the net, or a reference to the net.
num_iter: number of iterations to run
allow_fail: if True, does not assert on net exec failure but returns False
Returns:
True or an exception.
"""
return CallWithExceptionIntercept(
C.run_net,
C.Workspace.current._last_failed_op_net_position,
GetNetName(name),
StringifyNetName(name), num_iter, allow_fail,
)
def RunPlan(plan_or_step):
# TODO(jiayq): refactor core.py/workspace.py to avoid circular deps
import caffe2.python.core as core
if isinstance(plan_or_step, core.ExecutionStep):
plan_or_step = core.Plan(plan_or_step)
return C.run_plan(StringifyProto(plan_or_step))
def RunPlanInBackground(plan_or_step):
# TODO(jiayq): refactor core.py/workspace.py to avoid circular deps
import caffe2.python.core as core
if isinstance(plan_or_step, core.ExecutionStep):
plan_or_step = core.Plan(plan_or_step)
return C.run_plan_in_background(StringifyProto(plan_or_step))
def InferShapesAndTypes(nets, blob_dimensions=None, nets_proto=False,
blob_types=None):
"""Infers the shapes and types for the specified nets.
Inputs:
nets: the list of nets
blob_dimensions (optional): a dictionary of blobs and their dimensions.
If not specified, the workspace blobs are used.
nets_proto (optional): a boolean flag indicating whether the protobuffer
representation is passed to the routine.
Returns:
A tuple of (shapes, types) dictionaries keyed by blob name.
"""
if nets_proto:
net_protos = [StringifyProto(n) for n in nets]
else:
net_protos = [StringifyProto(n.Proto()) for n in nets]
if blob_dimensions is None:
assert blob_types is None
blobdesc_prototxt = C.infer_shapes_and_types_from_workspace(net_protos)
elif blob_types is None:
blobdesc_prototxt = C.infer_shapes_and_types_from_map(
net_protos, blob_dimensions
)
else:
blobdesc_prototxt = C.infer_shapes_and_types_from_map(
net_protos, blob_dimensions, blob_types
)
blobdesc_proto = caffe2_pb2.TensorShapes()
blobdesc_proto.ParseFromString(blobdesc_prototxt)
shapes = {}
types = {}
for ts in blobdesc_proto.shapes:
if not ts.unknown_shape:
shapes[ts.name] = list(ts.dims)
types[ts.name] = ts.data_type
return (shapes, types)
def _StringifyName(name, expected_type):
if isinstance(name, basestring):
return name
assert type(name).__name__ == expected_type, \
"Expected a string or %s" % expected_type
return str(name)
def StringifyBlobName(name):
return _StringifyName(name, "BlobReference")
def StringifyNetName(name):
return _StringifyName(name, "Net")
def GetNetName(net):
if isinstance(net, basestring):
return net
if type(net).__name__ == "Net" or type(net).__name__ == "NetWithShapeInference":
return net.Name()
if isinstance(net, caffe2_pb2.NetDef):
return net.name
raise Exception("Not a Net object: {}".format(str(net)))
def FeedBlob(name, arr, device_option=None):
"""Feeds a blob into the workspace.
Inputs:
name: the name of the blob.
arr: either a TensorProto object or a numpy array object to be fed into
the workspace.
device_option (optional): the device option to feed the data with.
Returns:
True or False, stating whether the feed is successful.
"""
ws = C.Workspace.current
return _Workspace_feed_blob(ws, name, arr, device_option)
def FetchBlobs(names):
"""Fetches a list of blobs from the workspace.
Inputs:
names: list of names of blobs - strings or BlobReferences
Returns:
list of fetched blobs
"""
return [FetchBlob(name) for name in names]
def FetchBlob(name):
"""Fetches a blob from the workspace.
Inputs:
name: the name of the blob - a string or a BlobReference
Returns:
Fetched blob (numpy array or string) if successful
"""
result = C.fetch_blob(StringifyBlobName(name))
if isinstance(result, tuple):
raise TypeError(
"Use FetchInt8Blob to fetch Int8 Blob {}".format(
StringifyBlobName(name)
)
)
return result
def FetchTorch(name):
ws = C.Workspace.current
return ws.blobs[name].to_torch()
Int8Tensor = collections.namedtuple(
'Int8Tensor', ['data', 'scale', 'zero_point']
)
def FetchInt8Blob(name):
"""Fetches an Int8 blob from the workspace. It shared backend implementation
with FetchBlob but it is recommended when fetching Int8 Blobs
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
data: int8 numpy array, data
scale: float, fake quantization scale
zero_point: int, fake quantization offset
"""
result = C.fetch_blob(StringifyBlobName(name))
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use FetchBlob'.format(
StringifyBlobName(name))
return Int8Tensor(*result)
def FetchInt8BlobRealVal(name):
"""Fetches an Int8 blob from the workspace and return its real value representation.
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
real value representation of int8 numpy array
"""
result = C.fetch_blob(StringifyBlobName(name))
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use FetchBlob'.format(
StringifyBlobName(name))
int8_blob = Int8Tensor(*result)
return (int8_blob.data.astype(np.int32) - int(int8_blob.zero_point)).astype(
np.float32) * int8_blob.scale
def _Workspace_fetch_int8_blob(ws, name):
"""Fetches an Int8 blob from the workspace. It shared backend implementation
with FetchBlob but it is recommended when fetching Int8 Blobs
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
data: int8 numpy array, data
scale: float, fake quantization scale
zero_point: int, fake quantization offset
"""
result = ws.fetch_blob(name)
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use fetch_blob'.format(
StringifyBlobName(name))
return Int8Tensor(*result)
C.Workspace.fetch_int8_blob = _Workspace_fetch_int8_blob
def ApplyTransform(transform_key, net):
"""Apply a Transform to a NetDef protobuf object, and returns the new
transformed NetDef.
Inputs:
transform_key: the name of the transform, as it is stored in the registry
net: a NetDef protobuf object
Returns:
Transformed NetDef protobuf object.
"""
transformed_net = caffe2_pb2.NetDef()
transformed_str = C.apply_transform(
str(transform_key).encode('utf-8'),
net.SerializeToString(),
)
transformed_net.ParseFromString(transformed_str)
return transformed_net
def ApplyTransformIfFaster(transform_key, net, init_net, **kwargs):
"""Apply a Transform to a NetDef protobuf object, and returns the new
transformed NetDef, only if it runs faster than the original.
The runs are performed on the current active workspace (gWorkspace).
You should initialize that workspace before making a call to this function.
Inputs:
transform_key: the name of the transform, as it is stored in the registry
net: a NetDef protobuf object
init_net: The net to initialize the workspace.
warmup_runs (optional):
Determines how many times the net is run before testing.
Will be 5 by default.
main_runs (optional):
Determines how many times the net is run during testing.
Will be 10 by default.
improvement_threshold (optional):
Determines the factor which the new net needs to be faster
in order to replace the old. Will be 1.01 by default.
Returns:
Either a Transformed NetDef protobuf object, or the original netdef.
"""
warmup_runs = kwargs['warmup_runs'] if 'warmup_runs' in kwargs else 5
main_runs = kwargs['main_runs'] if 'main_runs' in kwargs else 10
improvement_threshold = kwargs['improvement_threshold'] \
if 'improvement_threshold' in kwargs else 1.01
transformed_net = caffe2_pb2.NetDef()
transformed_str = C.apply_transform_if_faster(
str(transform_key).encode('utf-8'),
net.SerializeToString(),
init_net.SerializeToString(),
warmup_runs,
main_runs,
float(improvement_threshold),
)
transformed_net.ParseFromString(transformed_str)
return transformed_net
def GetNameScope():
"""Return the current namescope string. To be used to fetch blobs"""
return scope.CurrentNameScope()
class _BlobDict(object):
"""Provides python dict compatible way to do fetching and feeding"""
def __getitem__(self, key):
return FetchBlob(key)
def __setitem__(self, key, value):
return FeedBlob(key, value)
def __len__(self):
return len(C.blobs())
def __iter__(self):
return C.blobs().__iter__()
def __contains__(self, item):
return C.has_blob(item)
blobs = _BlobDict()
################################################################################
# Utilities for immediate mode
#
# Caffe2's immediate mode implements the following behavior: between the two
# function calls StartImmediate() and StopImmediate(), for any operator that is
# called through CreateOperator(), we will also run that operator in a workspace
# that is specific to the immediate mode. The user is explicitly expected to
# make sure that these ops have proper inputs and outputs, i.e. one should not
# run an op where an external input is not created or fed.
#
# Users can use FeedImmediate() and FetchImmediate() to interact with blobs
# in the immediate workspace.
#
# Once StopImmediate() is called, all contents in the immediate workspace is
# freed up so one can continue using normal runs.
#
# The immediate mode is solely for debugging purposes and support will be very
# sparse.
################################################################################
_immediate_mode = False
_immediate_workspace_name = "_CAFFE2_IMMEDIATE"
_immediate_root_folder = ''
def IsImmediate():
return _immediate_mode
@contextlib.contextmanager
def WorkspaceGuard(workspace_name):
current = CurrentWorkspace()
SwitchWorkspace(workspace_name, True)
yield
SwitchWorkspace(current)
def StartImmediate(i_know=False):
global _immediate_mode
global _immediate_root_folder
if IsImmediate():
# already in immediate mode. We will kill the previous one
# and start from fresh.
StopImmediate()
_immediate_mode = True
with WorkspaceGuard(_immediate_workspace_name):
_immediate_root_folder = tempfile.mkdtemp()
ResetWorkspace(_immediate_root_folder)
if i_know:
# if the user doesn't want to see the warning message, sure...
return
print("""
Enabling immediate mode in caffe2 python is an EXTREMELY EXPERIMENTAL
feature and may very easily go wrong. This is because Caffe2 uses a
declarative way of defining operators and models, which is essentially
not meant to run things in an interactive way. Read the following carefully
to make sure that you understand the caveats.
(1) You need to make sure that the sequences of operators you create are
actually runnable sequentially. For example, if you create an op that takes
an input X, somewhere earlier you should have already created X.
(2) Caffe2 immediate uses one single workspace, so if the set of operators
you run are intended to be under different workspaces, they will not run.
To create boundaries between such use cases, you can call FinishImmediate()
and StartImmediate() manually to flush out everything no longer needed.
(3) Underlying objects held by the immediate mode may interfere with your
normal run. For example, if there is a leveldb that you opened in immediate
mode and did not close, your main run will fail because leveldb does not
support double opening. Immediate mode may also occupy a lot of memory esp.
on GPUs. Call FinishImmediate() as soon as possible when you no longer
need it.
(4) Immediate is designed to be slow. Every immediate call implicitly
creates a temp operator object, runs it, and destroys the operator. This
slow-speed run is by design to discourage abuse. For most use cases other
than debugging, do NOT turn on immediate mode.
(5) If there is anything FATAL happening in the underlying C++ code, the
immediate mode will immediately (pun intended) cause the runtime to crash.
Thus you should use immediate mode with extra care. If you still would
like to, have fun [https://xkcd.com/149/].
""")
def StopImmediate():
"""Stops an immediate mode run."""
# Phew, that was a dangerous ride.
global _immediate_mode
global _immediate_root_folder
if not IsImmediate():
return
with WorkspaceGuard(_immediate_workspace_name):
ResetWorkspace()
shutil.rmtree(_immediate_root_folder)
_immediate_root_folder = ''
_immediate_mode = False
def ImmediateBlobs():
with WorkspaceGuard(_immediate_workspace_name):
return Blobs()
def RunOperatorImmediate(op):
with WorkspaceGuard(_immediate_workspace_name):
RunOperatorOnce(op)
def FetchImmediate(*args, **kwargs):
with WorkspaceGuard(_immediate_workspace_name):
return FetchBlob(*args, **kwargs)
def FeedImmediate(*args, **kwargs):
with WorkspaceGuard(_immediate_workspace_name):
return FeedBlob(*args, **kwargs)
# C.Workspace methods.
def _Workspace_create_net_with_exception_intercept(ws, net, overwrite=False):
return CallWithExceptionIntercept(
ws._create_net,
ws._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net), overwrite,
)
def _Workspace_run(ws, obj):
if hasattr(obj, 'Proto'):
obj = obj.Proto()
if isinstance(obj, caffe2_pb2.PlanDef):
return ws._run_plan(obj.SerializeToString())
if isinstance(obj, caffe2_pb2.NetDef):
return CallWithExceptionIntercept(
ws._run_net,
ws._last_failed_op_net_position,
GetNetName(obj),
obj.SerializeToString(),
)
# return ws._run_net(obj.SerializeToString())
if isinstance(obj, caffe2_pb2.OperatorDef):
return ws._run_operator(obj.SerializeToString())
raise ValueError(
"Don't know how to do Workspace.run() on {}".format(type(obj)))
def _Workspace_feed_blob(ws, name, arr, device_option=None):
if type(arr) is caffe2_pb2.TensorProto:
arr = utils.Caffe2TensorToNumpyArray(arr)
if type(arr) is np.ndarray and arr.dtype.kind in 'SU':
# Plain NumPy strings are weird, let's use objects instead
arr = arr.astype(np.object)
if device_option is None:
device_option = scope.CurrentDeviceScope()
if device_option and device_option.device_type == caffe2_pb2.CUDA:
if arr.dtype == np.dtype('float64'):
logger.warning(
"CUDA operators do not support 64-bit doubles, " +
"please use arr.astype(np.float32) or np.int32 for ints." +
" Blob: {}".format(name) +
" type: {}".format(str(arr.dtype))
)
name = StringifyBlobName(name)
if device_option is not None:
return ws.create_blob(name).feed(arr, device_option)
else:
return ws.create_blob(name).feed(arr)
def _Workspace_remove_blob(ws, blob):
ws._remove_blob(str(blob))
Workspace = C.Workspace
Workspace.create_net = _Workspace_create_net_with_exception_intercept
Workspace.run = _Workspace_run
Workspace.feed_blob = _Workspace_feed_blob
Workspace.remove_blob = _Workspace_remove_blob
# C.Blob methods.
def _Blob_feed(blob, arg, device_option=None):
# conservative type check to avoid unnecessary import
if type(arg).__name__ == 'Tensor' and type(arg).__module__ == 'torch':
import torch
if isinstance(arg, torch.Tensor):
assert device_option is None, \
"device_option doesn't make sense with PyTorch tensors"
handle = torch._C._tensor_impl_raw_handle(arg)
blob._wrap_tensor_impl(handle)
return True # _feed() returns True for some reason
if device_option is not None:
device_option = StringifyProto(device_option)
return blob._feed(arg, device_option)
C.Blob.feed = _Blob_feed
def _Tensor_to_torch(tensor):
"""
PyTorch tensor interop (TensorCPU methods)
Can be accessed as:
workspace.Workspace.current.blobs['foo'].tensor().to_torch()
"""
# avoiding circular dependency
import torch
handle = tensor._tensor_impl_raw_handle()
return torch._C._wrap_tensor_impl(handle)
C.TensorCPU.to_torch = _Tensor_to_torch
def _Blob_to_torch(blob):
if not blob.is_tensor():
raise RuntimeError("Blob has to be a tensor")
return blob.as_tensor().to_torch()
C.Blob.to_torch = _Blob_to_torch