#pragma once #include <ATen/ATen.h> #include <ATen/native/TypeProperties.h> namespace at { namespace native { inline void searchsorted_maybe_trim_input_tensors( Tensor& trimmed_input, Tensor& trimmed_boundaries, const Tensor& raw_input, const Tensor& raw_boundaries) { bool in_is_contiguous = raw_input.is_contiguous(); bool bd_is_contiguous = raw_boundaries.is_contiguous(); if (!in_is_contiguous) { TORCH_WARN_ONCE("input value tensor is non-contiguous, this will lower the performance due to extra data copy " "when converting non-contiguous tensor to contiguous, please use contiguous input value tensor if possible"); trimmed_input = raw_input.contiguous(); } if (!bd_is_contiguous) { TORCH_WARN_ONCE("input value tensor is non-contiguous, this will lower the performance due to extra data copy " "when converting non-contiguous tensor to contiguous, please use contiguous input value tensor if possible"); trimmed_boundaries = raw_boundaries.contiguous(); } if (raw_input.dtype() != raw_boundaries.dtype()) { at::native::ResultTypeState state = {}; state = at::native::update_result_type_state(raw_boundaries, state); state = at::native::update_result_type_state(raw_input, state); ScalarType common_stype = at::native::result_type(state); TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined); if (common_stype != raw_input.scalar_type()) { trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype); } if (common_stype != raw_boundaries.scalar_type()) { trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype); } } } inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) { if (boundaries.dim() != input.dim()) { return false; } const auto& dims_bd = boundaries.sizes(); const auto& dims_in = input.sizes(); for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) { if (dims_bd[dim] != dims_in[dim]) { return false; } } return true; } inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) { auto tensor = c10::scalar_to_tensor(scalar, device); // This is to adopt the scalar promotion rules defined in native/TypeProperties.h // So we have the same type promotion rules as binary operations. tensor.unsafeGetTensorImpl()->set_wrapped_number(true); return tensor; } inline void searchsorted_pre_check(const Tensor& boundaries, const Tensor& input, const Tensor& output, bool out_int32) { TORCH_CHECK(boundaries.device() == input.device(), "boundaries and input value tensors should have same device type, ", "but we got boundaries tensor device type ", boundaries.device(), " and input value tensor device type ", input.device()); TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1), "input value can be a scalar only when boundaries tensor dimension is 1, but we got boundaries tensor ", "dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(", input.numel(), ")"); TORCH_CHECK(boundaries.dim() != 0, "boundaries tensor should have positive dimension, but got 0 dimension"); TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input), "boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor and input value tensor ", "must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ", input.sizes()); ScalarType output_dtype = output.scalar_type(); TORCH_CHECK((output_dtype == ScalarType::Long && !out_int32) || (output_dtype == ScalarType::Int && out_int32), "output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on whether out_int32 flag is True, ", "but we got output tensor's dtype ", output_dtype, " and out_int32 flag is ", (out_int32 ? "True" : "False")); if (out_int32) { TORCH_CHECK(boundaries.sizes().back() < INT_MAX, "the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ", boundaries.sizes().back()); } } }}