-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbankrupt.py
134 lines (107 loc) · 4.98 KB
/
bankrupt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import tensorflow as tf
import numpy as np
import threading
import pandas as pd
from sklearn.preprocessing import Imputer
from sklearn.cross_validation import train_test_split
#TODO testar com o 5 datasets
# Ler o ficheiro CSV
dataset_path = './iart_dataset/1year.csv'
dataset_path2 = './iart_dataset/2year.csv'
dataset_pathOversampled = './iart_dataset/allyearsUndersampled.csv'
raw_dataset = pd.read_csv(dataset_pathOversampled)
if raw_dataset is None:
print("Error reading .csv file")
else:
print("Raw data read")
# Parametros
CLASS_NAME = "class"
ATTRIBUTES = [i for i in raw_dataset.keys().tolist() if i != CLASS_NAME]
NUM_EXAMPLES = raw_dataset.shape[0]
RANDOM_SEED = 50
TEST_SIZE = 0.2
TRAIN_SIZE = int(NUM_EXAMPLES * (1 - TEST_SIZE))
EPOCHS = 8000
DISPLAY_STEP = 10
n_input = raw_dataset.shape[1] - 1
n_output = raw_dataset['class'].unique().shape[0] #o unique devolve um array de valores diferentes, e o shape[0] e o tamanho desse array
n_hidden = 33
learning_rate = 0.011
batch_size = 100
# Carregar os dados
examples_raw = raw_dataset[ATTRIBUTES].get_values()
labels = raw_dataset[CLASS_NAME].get_values()
# Pre-processamento do dataset
# One hot encoding
labels_onehot = np.zeros((NUM_EXAMPLES, n_output))
labels_onehot[np.arange(NUM_EXAMPLES), labels] = 1
# Prencher os missing values
imputer = Imputer(missing_values = 'NaN', strategy="mean", axis=1)
examples_processed = imputer.fit_transform(examples_raw)
print("Data preprocessed")
# Dividir os exemplos em sets de treino e teste
examples_train, examples_test, labels_train, labels_test = train_test_split(examples_processed,
labels_onehot,
test_size = TEST_SIZE,
random_state=RANDOM_SEED)
print("Data split into training and testing sets")
# Modelo
def combination_function(input_values, weights, biases):
return tf.add(tf.matmul(input_values, weights), biases)
def activation_function(input_values):
return tf.nn.sigmoid(input_values)
def multilayer_perceptron(input_layer, weights, biases):
hidden_layer = activation_function(combination_function(input_layer, weights['hidden'], biases['hidden']))
out_layer = activation_function(combination_function(hidden_layer, weights['out'], biases['out']))
return out_layer
# Pesos e Biases
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), #Matriz com valores aleatorios segundo uma distribuicao normal
'out': tf.Variable(tf.random_normal([n_hidden, n_output]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_output]))
}
# Input do grafo
inputs = tf.placeholder(tf.float32, [None, n_input])
labels = tf.placeholder(tf.float32, [None, n_output])
# Construcao do modelo
prediction = multilayer_perceptron(inputs, weights, biases)
# Perda e optimizador da perda
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=labels))
#optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Precisao
correct_predictions = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
init = tf.initialize_all_variables()
print("Network built")
print("Training...")
with tf.Session() as session:
session.run(init)
training_accuracy = 0;
epoch = 0;
while training_accuracy < 0.95:
#for epoch in xrange(EPOCHS):
average_cost = 0;
total_batch = int(examples_train.shape[0]/batch_size)
for i in xrange(total_batch):
#Get batches with random samples from training set
random_indexes = np.random.randint(int(TRAIN_SIZE), size= batch_size)
batch_examples = examples_train[random_indexes, :]
batch_labels = labels_train[random_indexes, :]
session.run(optimizer, feed_dict={inputs: batch_examples, labels: batch_labels})
average_cost += session.run(cost, feed_dict={inputs: batch_examples, labels: batch_labels})/total_batch
if epoch % DISPLAY_STEP == 0:
#print("Epoch: %03d/%03d cost: %.9f" % (epoch, EPOCHS, average_cost))
print("Epoch: %03d cost: %.9f" % (epoch, average_cost))
training_accuracy = session.run(accuracy, feed_dict={inputs:batch_examples, labels:batch_labels})
print("Training accuracy: %.3f" % (training_accuracy))
epoch += 1
print("Ended training.")
print("Begin testing...")
test_accuracy = session.run(accuracy, feed_dict={inputs: examples_test, labels: labels_test})
print("Test accuracy: %.6f" % (test_accuracy))
session.close()
print("Session closed")