Skip to content

Latest commit

 

History

History
54 lines (45 loc) · 1.45 KB

README.md

File metadata and controls

54 lines (45 loc) · 1.45 KB

ANN Implementation

Author : Zhekai Jin (Scott)

Description


An implementation of Artificial Neural Network using C++.

Dependency

  • CMAKE 3.0
  • MAKE

Usage

./ANN_train
Follow the Prompt
./ANN_test
Follow the Prompt

Build

https://github.com/ZhekaiJin/Artifical_NN.git
cd Artifical_NN/
mkdir build && cd build
cmake .. && make 

Clear Build

cd Artifical_NN/
rm -rf build

Database Description

  • Filename: robot_dataset

  • Title: Wall-Following navigation task with mobile robot SCITOS-G5

  • Reasonable parameter:

    1. learning rate : 0.05
    2. Epoch(iterations) : 100
    3. Number of hidden nodes: 5
  • Filename for trained/untrained/result:

    1. untrained: init_weight
    2. trained: sample.out.05.100.trained
    3. result: sample.out.05.100.results
  • Initial weights are generated through scirpt : init_weight.py

  • Database are modified using script : format_to_data.py [take 1 parameter as the percentage of the training set to be partitioned from the dataset, e.g. 0.8]

    1. Dropped incomplete data
    2. Encoded the classification to binary classification of four nodes
    3. Drop out irrelevant feature (no correlation to classification task)
    4. Partition the data to test (20 % of original sets) and train (80% of original sets)
  • Full description of the dataset can be found at Wall-following.names in the folder, dataset found on UCI machine learning dataset repository