-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
144 lines (122 loc) · 5.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from torch.utils.data import DataLoader
import importlib
from tqdm import tqdm
import torch.backends.cudnn as cudnn
from utils.utils import *
from utils.utils_datasets import TrainSetDataLoader
from collections import OrderedDict
def main(args):
''' Create Dir for Save '''
experiment_dir, checkpoints_dir, log_dir = create_dir(args)
''' Logger '''
logger = Logger(log_dir, args)
''' CPU or Cuda '''
torch.cuda.set_device(args.local_rank)
# device = torch.device("cuda", args.local_rank)
device = torch.device("cpu", args.local_rank)
''' DATA TRAINING LOADING '''
logger.log_string('\nLoad Training Dataset ...')
train_Dataset = TrainSetDataLoader(args)
logger.log_string("The number of training data is: %d" % len(train_Dataset))
train_loader = torch.utils.data.DataLoader(dataset=train_Dataset, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True,)
''' MODEL LOADING '''
logger.log_string('\nModel Initial ...')
MODEL_PATH = 'model.' + args.model_name
MODEL = importlib.import_module(MODEL_PATH)
net = MODEL.get_model(args)
''' load pre-trained pth '''
if args.use_pre_pth == False:
net.apply(MODEL.weights_init)
start_epoch = 0
logger.log_string('Do not use pretrain model!')
else:
try:
ckpt_path = args.path_pre_pth
checkpoint = torch.load(ckpt_path, map_location='cpu')
start_epoch = checkpoint['epoch']
try:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = 'module.' + k # add `module.`
new_state_dict[name] = v
# load params
net.load_state_dict(new_state_dict)
logger.log_string('Use pretrain model!')
except:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
new_state_dict[k] = v
# load params
net.load_state_dict(new_state_dict)
logger.log_string('Use pretrain model!')
except:
net.apply(MODEL.weights_init)
start_epoch = 0
logger.log_string('No existing model, starting training from scratch...')
pass
pass
net = net.to(device)
cudnn.benchmark = True
''' Print Parameters '''
logger.log_string('PARAMETER ...')
logger.log_string(args)
'''LOSS LOADING '''
criterion = MODEL.get_loss(args).to(device)
''' optimizer'''
optimizer = torch.optim.Adam(
[paras for paras in net.parameters() if paras.requires_grad == True],
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.n_steps, gamma=args.gamma)
''' TRAINING '''
logger.log_string('\nStart training...')
for idx_epoch in range(start_epoch, args.epoch):
logger.log_string('\nEpoch %d /%s:' % (idx_epoch + 1, args.epoch))
loss_epoch_train, psnr_epoch_train, ssim_epoch_train = train(train_loader, device, net, criterion, optimizer)
logger.log_string('The %dth Train, loss is: %.5f, psnr is %.5f, ssim is %.5f' %
(idx_epoch + 1, loss_epoch_train, psnr_epoch_train, ssim_epoch_train))
# save model
if args.local_rank == 0:
save_ckpt_path = str(checkpoints_dir) + '/%s_%dx%d_%dx_epoch_%02d_model.pth' % (
args.model_name, args.angRes, args.angRes, args.scale_factor, idx_epoch + 1)
state = {
'epoch': idx_epoch + 1,
'state_dict': net.module.state_dict() if hasattr(net, 'module') else net.state_dict(),
}
torch.save(state, save_ckpt_path)
logger.log_string('Saving the epoch_%02d model at %s' % (idx_epoch + 1, save_ckpt_path))
''' scheduler '''
scheduler.step()
pass
pass
def train(train_loader, device, net, criterion, optimizer):
'''training one epoch'''
psnr_iter_train = []
loss_iter_train = []
ssim_iter_train = []
args.temperature = 1.0
for idx_iter, (data, label) in tqdm(enumerate(train_loader), total=len(train_loader), ncols=70):
data = data.to(device) # low resolution
label = label.to(device) # high resolution
out = net(data)
loss = criterion(out, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
loss_iter_train.append(loss.data.cpu())
psnr, ssim = cal_metrics(args, label, out)
psnr_iter_train.append(psnr)
ssim_iter_train.append(ssim)
pass
loss_epoch_train = float(np.array(loss_iter_train).mean())
psnr_epoch_train = float(np.array(psnr_iter_train).mean())
ssim_epoch_train = float(np.array(ssim_iter_train).mean())
return loss_epoch_train, psnr_epoch_train, ssim_epoch_train
if __name__ == '__main__':
from option import args
main(args)