-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdemo.py
43 lines (33 loc) · 1.36 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tkinter as tk
import tensorflow as tf
from air.air_model import AIRModel
from demo.demo_window import DemoWindow
from demo.model_wrapper import ModelWrapper
CANVAS_SIZE = 50
WINDOW_SIZE = 28
MODEL_PATH = "./model/air-model"
test_data = tf.placeholder(tf.float32, shape=[None, CANVAS_SIZE ** 2])
test_targets = tf.placeholder(tf.int32, shape=[None])
print("Creating model...")
air_model = AIRModel(
test_data, test_targets,
max_steps=3, rnn_units=256, canvas_size=CANVAS_SIZE, windows_size=WINDOW_SIZE,
vae_latent_dimensions=50, vae_recognition_units=(512, 256), vae_generative_units=(256, 512),
vae_likelihood_std=0.3, scale_hidden_units=64, shift_hidden_units=64, z_pres_hidden_units=64,
z_pres_temperature=1.0, stopping_threshold=0.99, cnn=False,
train=False, reuse=False, scope="air",
)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
print("Restoring model...")
tf.train.Saver().restore(sess, MODEL_PATH)
wrapper = ModelWrapper(air_model, sess, test_data)
print("Creating window...")
master = tk.Tk()
master.title("Attend Infer Repeat - Live Demo")
master.columnconfigure(0, weight=1)
master.rowconfigure(0, weight=1)
window = DemoWindow(master, wrapper, CANVAS_SIZE, WINDOW_SIZE)
window.grid(sticky=(tk.N, tk.S, tk.W, tk.E))
master.mainloop()