-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
202 lines (155 loc) · 6.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from __future__ import division
from __future__ import print_function
import math
import random
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import load_data, accuracy, accuracy_InnerProduct
from models import KernelGCN
def weights_init(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=31, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, #default = 0.01
help='Initial learning rate.')
parser.add_argument('--samples', type=int, default=10000,
help='samples per triplet loss.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--dataroot', type=str, default='data', help='path')
parser.add_argument('--dataset', type=str, default='cora', help='[cora]')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load data
adjs, features, labels, idx_train, idx_val, idx_test, adj = load_data(path=args.dataroot, dataset=args.dataset)
nstep = len(adjs)
# Model and optimizer
model = KernelGCN(nfeat=features.shape[1],
nh1 = 16,
nclass=labels.max().item() + 1,
dropout=args.dropout)
model.apply(weights_init)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
for i in range(nstep):
adjs[i] = adjs[i].cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
def split_labels(labels):
nclass = torch.max(labels) + 1
labels_split = []
labels_split_numpy = []
for i in range(nclass):
labels_split.append((labels == i).nonzero().view([-1]))
for i in range(nclass):
labels_split_numpy.append(labels_split[i].cpu().numpy())
labels_split_dif = []
for i in range(nclass):
dif_type = [x for x in range(nclass) if x != i]
labels_dif = torch.cat([ labels_split[x] for x in dif_type ])
labels_split_dif.append(labels_dif)
return nclass, labels_split, labels_split_numpy, labels_split_dif
def triplet_loss_InnerProduct(nclass, labels_split, labels_split_dif, logits):
n_sample = args.samples
n_sample_class = (int)(n_sample / nclass)
thre = 0.1
loss = 0
for i in range(nclass):
# python2: xrange, python3: range
randInds1 = random.choices(labels_split[i], k=n_sample_class)
randInds2 = random.choices(labels_split[i], k=n_sample_class)
feats1 = logits[randInds1]
feats2 = logits[randInds2]
randInds_dif = random.choices(labels_split_dif[i], k=n_sample_class)
feats_dif = logits[randInds_dif]
# inner product: same class inner product should > dif class inner product
inner_products = torch.sum(torch.mul(feats1, feats_dif-feats2), dim=1)
dists = inner_products + thre
mask = dists > 0
loss += torch.sum(torch.mul(dists, mask.float()))
loss /= n_sample_class*nclass
return loss
def getClassMean(nclass, labels_split, logits):
class_mean = torch.cat([torch.mean(logits[labels_split[x]], dim=0).view(-1,1) for x in range(nclass)], dim=1)
return class_mean
def train(epoch):
t = time.time()
model.train()
optimizer.zero_grad()
logits, output = model(features, adjs)
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_triplet = triplet_loss_InnerProduct(nclass.item(), labels_split, labels_split_dif, logits)
loss_all = loss_train + 0.1*loss_triplet
loss_all.backward()
optimizer.step()
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('Epoch: {:04d}'.format(epoch+1),
'loss_all: {:.4f}'.format(loss_all.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def load_model(net, name):
state_dict = torch.load(name)
own_state = net.state_dict()
for name, param in state_dict.items():
if name not in own_state:
continue
own_state[name].copy_(param)
def test():
print('Epoch: {:04d}'.format(args.epochs),
'lr: {:.4f}'.format(args.lr),
'samples: {:04d}'.format(args.samples))
model.eval()
logits, output = model(features, adjs)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
class_mean = getClassMean(nclass.item(), labels_split, logits)
if args.cuda:
acc_test_innerproduct = accuracy_InnerProduct(labels.cpu().numpy(), logits.detach().cpu().numpy(), class_mean.detach().cpu().numpy(), idx_test.cpu().numpy())
else:
acc_test_innerproduct = accuracy_InnerProduct(labels.numpy(), logits.detach().numpy(), class_mean.detach().numpy(), idx_test.numpy())
print("Test set results (last model):",
"accuracy_innerproduct= {:.4f}".format(acc_test_innerproduct),
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
# Train model
t_total = time.time()
nclass, labels_split, labels_split_numpy, labels_split_dif = split_labels(labels[idx_train])
for epoch in range(args.epochs):
train(epoch)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Testing
test()