-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMPC.cpp
256 lines (218 loc) · 8.23 KB
/
MPC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "MPC.h"
#include <cppad/cppad.hpp>
#include <cppad/ipopt/solve.hpp>
#include "Eigen-3.3/Eigen/Core"
using CppAD::AD;
// Set the time horizon
// These were found by trail and experimentation
size_t N = 10;
double dt = 0.05;
// This value assumes the model presented in the classroom is used.
//
// It was obtained by measuring the radius formed by running the vehicle in the
// simulator around in a circle with a constant steering angle and velocity on a
// flat terrain.
//
// Lf was tuned until the the radius formed by the simulating the model
// presented in the classroom matched the previous radius.
//
// This is the length from front to CoG that has a similar radius.
const double Lf = 2.67;
// Reference variables for the controller
double ref_cte = 0;
double ref_epsi = 0;
double ref_v = 40;
// Define few variables for better bookkeeping
size_t x_start = 0;
size_t y_start = x_start + N;
size_t psi_start = y_start + N;
size_t v_start = psi_start + N;
size_t cte_start = v_start + N;
size_t epsi_start = cte_start + N;
size_t delta_start = epsi_start + N;
size_t a_start = delta_start + N - 1;
class FG_eval {
public:
// Fitted polynomial coefficients
Eigen::VectorXd coeffs;
FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
void operator()(ADvector& fg, const ADvector& vars) {
// `fg` a vector of the cost constraints, `vars` is a vector of variable values (state & actuators)
// The cost is stored is the first element of `fg`.
// Any additions to the cost should be added to `fg[0]`.
fg[0] = 0;
// Reference State Cost
double cte_weight = 1.0;
double epsi_weight = 100;
double v_weight = 1.0;
double delta_weight = 500.0;
double a_weight = 10.0;
double delta_diff_weight = 500.0;
double a_diff_weight = 10.0;
// For every step, make sure that squared errors are as small as possible
for (int i=0; i<N; i++) {
fg[0] += CppAD::pow(vars[cte_start+i]-ref_cte, 2)*cte_weight;
fg[0] += CppAD::pow(vars[epsi_start+i]-ref_epsi, 2)*epsi_weight;
fg[0] += CppAD::pow(vars[v_start+i]-ref_v, 2)*v_weight;
}
// Make sure that the controls inputs are as small as possible
for (int i=0; i<N-1; i++) {
fg[0] += CppAD::pow(vars[delta_start+i], 2)*delta_weight;
fg[0] += CppAD::pow(vars[a_start+i], 2)*a_weight;
}
// Make sure that the control inputs are as smooth as possible (no drastic changes from
// one time step to the next)
for (int i=0; i<N-2; i++) {
fg[0] += CppAD::pow(vars[delta_start+i]-vars[delta_start+i+1], 2)*delta_diff_weight;
fg[0] += CppAD::pow(vars[a_start+i]-vars[a_start+i+1], 2)*a_diff_weight;
}
//
// Setup Constraints
//
// Initial constraints
//
// We add 1 to each of the starting indices due to cost being located at
// index 0 of `fg`.
// This bumps up the position of all the other values.
fg[1 + x_start] = vars[x_start];
fg[1 + y_start] = vars[y_start];
fg[1 + psi_start] = vars[psi_start];
fg[1 + v_start] = vars[v_start];
fg[1 + cte_start] = vars[cte_start];
fg[1 + epsi_start] = vars[epsi_start];
// The rest of the constraints
for (int t = 1; t < N; t++) {
AD<double> x1 = vars[x_start + t];
AD<double> y1 = vars[y_start + t];
AD<double> psi1 = vars[psi_start + t];
AD<double> v1 = vars[v_start + t];
AD<double> cte1 = vars[cte_start + t];
AD<double> epsi1 = vars[epsi_start + t];
AD<double> x0 = vars[x_start + t - 1];
AD<double> y0 = vars[y_start + t - 1];
AD<double> psi0 = vars[psi_start + t - 1];
AD<double> v0 = vars[v_start + t - 1];
AD<double> cte0 = vars[cte_start + t - 1];
AD<double> epsi0 = vars[epsi_start + t - 1];
AD<double> delta0 = vars[delta_start + t - 1];
AD<double> a0 = vars[a_start + t -1];
AD<double> f0 = coeffs[0] + coeffs[1] * x0 + coeffs[2] * CppAD::pow(x0, 2);
AD<double> psides0 = CppAD::atan(coeffs[1] + 2 * coeffs[2] * x0 + 3 * coeffs[3] * CppAD::pow(x0, 2));
fg[1 + x_start + t] = x1 - (x0 + v0 * CppAD::cos(psi0) * dt);
fg[1 + y_start + t] = y1 - (y0 + v0 * CppAD::sin(psi0) * dt);
fg[1 + psi_start + t] = psi1 - (psi0 + v0 / Lf * delta0 * dt);
fg[1 + v_start + t] = v1 - (v0 + a0 * dt);
fg[1 + cte_start + t] = cte1 - ((f0 - y0) + v0 * CppAD::sin(epsi0) * dt);
fg[1 + epsi_start + t] = epsi1 - ((psi0 - psides0) + v0 / Lf * delta0 * dt);
}
}
};
//
// MPC class definition implementation.
//
MPC::MPC() {}
MPC::~MPC() {}
vector<double> MPC::Solve(Eigen::VectorXd state, Eigen::VectorXd coeffs) {
bool ok = true;
typedef CPPAD_TESTVECTOR(double) Dvector;
size_t n_vars = N * 6 + (N - 1) * 2;
size_t n_constraints = N * 6;
// Initial value of the independent variables.
Dvector vars(n_vars);
for (int i = 0; i < n_vars; i++) {
vars[i] = 0;
}
double px = state[0];
double py = state[1];
double psi = state[2];
double v = state[3];
double cte = state[4];
double epsi = state[5];
// Set the initial variable values
vars[x_start] = px;
vars[y_start] = py;
vars[psi_start] = psi;
vars[v_start] = v;
vars[cte_start] = cte;
vars[epsi_start] = epsi;
Dvector vars_lowerbound(n_vars);
Dvector vars_upperbound(n_vars);
// Set all non-actuators upper and lowerlimits
// to the max negative and positive values.
for (int i = 0; i < delta_start; i++) {
vars_lowerbound[i] = -1.0e19;
vars_upperbound[i] = 1.0e19;
}
// The upper and lower limits of delta are set to -25 and 25
// degrees (values in radians).
// NOTE: Feel free to change this to something else.
for (int i = delta_start; i < a_start; i++) {
vars_lowerbound[i] = -0.436332;
vars_upperbound[i] = 0.436332;
}
// Acceleration/decceleration upper and lower limits.
for (int i = a_start; i < n_vars; i++) {
vars_lowerbound[i] = -1.0;
vars_upperbound[i] = 1.0;
}
// Lower and upper limits for constraints
// All of these should be 0 except the initial
// state indices.
Dvector constraints_lowerbound(n_constraints);
Dvector constraints_upperbound(n_constraints);
for (int i = 0; i < n_constraints; i++) {
constraints_lowerbound[i] = 0;
constraints_upperbound[i] = 0;
}
constraints_lowerbound[x_start] = px;
constraints_lowerbound[y_start] = py;
constraints_lowerbound[psi_start] = psi;
constraints_lowerbound[v_start] = v;
constraints_lowerbound[cte_start] = cte;
constraints_lowerbound[epsi_start] = epsi;
constraints_upperbound[x_start] = px;
constraints_upperbound[y_start] = py;
constraints_upperbound[psi_start] = psi;
constraints_upperbound[v_start] = v;
constraints_upperbound[cte_start] = cte;
constraints_upperbound[epsi_start] = epsi;
// object that computes objective and constraints
FG_eval fg_eval(coeffs);
//
// NOTE: You don't have to worry about these options
//
// options for IPOPT solver
std::string options;
// Uncomment this if you'd like more print information
options += "Integer print_level 0\n";
// NOTE: Setting sparse to true allows the solver to take advantage
// of sparse routines, this makes the computation MUCH FASTER. If you
// can uncomment 1 of these and see if it makes a difference or not but
// if you uncomment both the computation time should go up in orders of
// magnitude.
options += "Sparse true forward\n";
options += "Sparse true reverse\n";
// NOTE: Currently the solver has a maximum time limit of 0.5 seconds.
// Change this as you see fit.
options += "Numeric max_cpu_time 50\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
constraints_upperbound, fg_eval, solution);
// Check some of the solution values
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
// Cost
auto cost = solution.obj_value;
std::cout << "Cost " << cost << std::endl;
vector<double> result;
result.push_back(solution.x[delta_start]);
result.push_back(solution.x[a_start]);
for (int i=0; i<N-1; i++) {
result.push_back(solution.x[x_start+i+1]);
result.push_back(solution.x[y_start+i+1]);
}
return result;
}