-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCITUNA.py
472 lines (367 loc) · 19 KB
/
SCITUNA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import gc
import math
import warnings
import numpy as np
import pandas as pd
import networkx as nx
import sys
from rpy2 import robjects
from collections import Counter
from sklearn.cluster import KMeans
from memory_profiler import profile
from rpy2.robjects import pandas2ri
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
from scipy.spatial.distance import cdist, pdist
from concurrent.futures import ThreadPoolExecutor
from sklearn.metrics.pairwise import euclidean_distances
warnings.filterwarnings("ignore")
class SCITUNA:
def __init__(self, adata,
batch_key,
o_dir,
k_neighbors=None,
beta=0.5,
max_iterations=10000):
self.beta = beta
self.adata = adata
self.batch_key = batch_key
self.k_neighbors = k_neighbors
self.max_iterations = max_iterations
self.o_dir = o_dir
self.preprocessing()
def preprocessing(self):
print("\tData Preprocessing.")
batches = sorted(Counter(self.adata.obs[self.batch_key]).items(), key=lambda x: x[1], reverse=False)
self.D_q = self.adata[self.adata.obs[self.batch_key] == batches[0][0]].to_df()
self.D_r = self.adata[self.adata.obs[self.batch_key] == batches[1][0]].to_df()
self.cell_ids = np.concatenate([self.D_q.index, self.D_r.index])
self.gene_ids = self.D_q.columns
self.batch_ids = pd.DataFrame(np.concatenate([self.adata[self.D_q.index].obs[[self.batch_key]],
self.adata[self.D_r.index].obs[[self.batch_key]]]))[0]
def reduce_dimensions(self, pca_dims=100):
print("\tDimensionality Red.")
if len(self.gene_ids) > pca_dims:
pca = PCA(n_components=int(pca_dims), random_state=0)
self.S_qr = pca.fit_transform(np.concatenate([self.D_q, self.D_r], axis=0))
self.S_q = pca.fit_transform(self.D_q)
self.S_r = pca.fit_transform(self.D_r)
else:
raise ValueError(
f"Invalid PCA configuration: The number of dimensions in the data "
f"must be greater than or equal to the number of components chosen for PCA ({pca_dims})."
)
def inter_intra_similarities(self):
print("\tInter-Similarities. ")
self.compute_inter_similarities()
print("\tIntra-Similarities.")
self.compute_intra_similarities()
def compute_inter_similarities(self):
self.q_nodes = ['q_' + str(i) for i in list(range(self.D_q.shape[0]))]
self.r_nodes = ['r_' + str(i) for i in list(range(self.D_r.shape[0]))]
self.inter_dists = euclidean_distances(self.S_qr[:len(self.D_q)], self.S_qr[len(self.D_q):])
def compute_intra_similarities(self, fresh=False):
self.query_intra_dist = euclidean_distances(self.S_q, self.S_q)
self.ref_intra_dist = euclidean_distances(self.S_r, self.S_r)
self.ref_intra_corr = 1. - cdist(self.S_r, self.S_r, metric='correlation')
self.query_intra_corr = 1. - cdist(self.S_q, self.S_q, metric='correlation')
# self.ref_intra_corr = np.corrcoef(self.S_r)
# self.query_intra_corr = np.corrcoef(self.S_q)
def construct_edges(self):
self.ref_intra_corr[np.tril_indices_from(self.ref_intra_corr)] = -2.0
self.query_intra_corr[np.tril_indices_from(self.query_intra_corr)] = -2.0
self.r_max_dist = np.max(self.ref_intra_dist)
self.q_max_dist = np.max(self.query_intra_dist)
self.r_min_dist = np.min(self.ref_intra_dist[~np.eye(self.ref_intra_dist.shape[0], dtype=bool)])
self.q_min_dist = np.min(self.query_intra_dist[~np.eye(self.query_intra_dist.shape[0], dtype=bool)])
# self.ref_intra_dist = np.triu(self.ref_intra_dist)
# self.query_intra_dist = np.triu(self.query_intra_dist)
p_q = 100 * max(20, min(list(Counter(self.qkm.labels_).values()))) / len(self.q_nodes)
p_r = 100 * max(20, min(list(Counter(self.rkm.labels_).values()))) / len(self.r_nodes)
if p_q > 1.5 * p_r:
p_q /= len(np.unique(self.qkm.labels_))
self.M_q = int(np.ceil(p_q / 100 * (int((len(self.q_nodes) ** 2 - len(self.q_nodes)) / 2))))
self.M_r = int(np.ceil(p_r / 100 * (int((len(self.r_nodes) ** 2 - len(self.r_nodes)) / 2))))
# Query
triu_rows, triu_cols = np.triu_indices(self.query_intra_corr.shape[0], k=1)
top_k_indices = np.argpartition(-self.query_intra_corr[triu_rows, triu_cols], self.M_q)[:self.M_q]
sorted_order = np.argsort(-self.query_intra_corr[triu_rows, triu_cols][top_k_indices])
self.q_edges = np.vstack((triu_rows[top_k_indices][sorted_order], triu_cols[top_k_indices][sorted_order])).T
# Reference
triu_rows, triu_cols = np.triu_indices(self.ref_intra_corr.shape[0], k=1)
top_k_indices = np.argpartition(-self.ref_intra_corr[triu_rows, triu_cols], self.M_r)[:self.M_r]
sorted_order = np.argsort(-self.ref_intra_corr[triu_rows, triu_cols][top_k_indices])
self.r_edges = np.vstack((triu_rows[top_k_indices][sorted_order], triu_cols[top_k_indices][sorted_order])).T
def clustering(self, kc=30):
print("\tClustering.")
K = range(2, kc)
def query_kmeans(k):
kmeans = KMeans(n_clusters=k, random_state=0).fit(self.S_q)
score = silhouette_score(self.query_intra_dist, kmeans.labels_, metric='precomputed')
# score = silhouette_score(self.S_q, kmeans.labels_)
return k, kmeans, score
def reference_kmeans(k):
kmeans = KMeans(n_clusters=k, random_state=0).fit(self.S_r)
score = silhouette_score(self.ref_intra_dist, kmeans.labels_, metric='precomputed')
# score = silhouette_score(self.S_r, kmeans.labels_)
return k, kmeans, score
query_silhouette_scores = []
ref_silhouette_scores = []
# Query
self.qkm = [-100, -100]
with ThreadPoolExecutor(max_workers=1) as executor:
results = list(executor.map(query_kmeans, K))
for k, kmeans, score in results:
self.qkm.append(kmeans)
query_silhouette_scores.append(score)
self.qkm = self.qkm[np.argmax(query_silhouette_scores) + 2]
# Reference
self.rkm = [-100, -100]
with ThreadPoolExecutor(max_workers=1) as executor:
results = list(executor.map(reference_kmeans, K))
for k, kmeans, score in results:
self.rkm.append(kmeans)
ref_silhouette_scores.append(score)
self.rkm = self.rkm[np.argmax(ref_silhouette_scores) + 2]
del self.S_qr, self.S_r, self.S_q
gc.collect()
def build_graphs(self, skip=5):
print("\tCons. Graphs")
self.Gq = nx.DiGraph()
self.Gr = nx.DiGraph()
self.Gq.add_nodes_from(self.q_nodes) # add nodes
self.Gr.add_nodes_from(self.r_nodes) # add nodes
print("\t\tBuild Gq")
# Query
M = self.M_q
S = int(skip / 100 * M) + 1
for (i, j) in self.q_edges[:S]:
dst = ((self.query_intra_dist[i, j] - self.q_min_dist) /
(self.q_max_dist - self.q_min_dist))
self.Gq.add_edge('q_' + str(i), 'q_' + str(j), dist=dst) # add a->b
self.Gq.add_edge('q_' + str(j), 'q_' + str(i), dist=dst) # add b->a
for (i, j) in self.q_edges[S:M]:
if self.qkm.labels_[i] == self.qkm.labels_[j]:
dst = ((self.query_intra_dist[i, j] - self.q_min_dist) /
(self.q_max_dist - self.q_min_dist))
self.Gq.add_edge('q_' + str(i), 'q_' + str(j), dist=dst) # add a->b
self.Gq.add_edge('q_' + str(j), 'q_' + str(i), dist=dst) # add b->a
del self.q_edges
gc.collect()
print("\t\tBuild Gr")
# Ref
M = self.M_r
S = int(skip / 100 * M) + 1
self.rn = set()
self.re = []
for (i, j) in self.r_edges[:S]:
self.re.append(i)
self.re.append(j)
if i not in self.matched_ref or j not in self.matched_ref:
continue
else:
dst = ((self.ref_intra_dist[i, j] - self.r_min_dist) /
(self.r_max_dist - self.r_min_dist))
self.Gr.add_edge('r_' + str(i), 'r_' + str(j), dist=dst) # add a->b
self.Gr.add_edge('r_' + str(j), 'r_' + str(i), dist=dst) # add b->a
for (i, j) in self.r_edges[S:M]:
if self.rkm.labels_[i] == self.rkm.labels_[j]:
self.re.append(i)
self.re.append(j)
if (i not in self.matched_ref or
j not in self.matched_ref):
continue
else:
dst = ((self.ref_intra_dist[i, j] - self.r_min_dist) /
(self.r_max_dist - self.r_min_dist))
self.Gr.add_edge('r_' + str(i), 'r_' + str(j), dist=dst) # add a->b
self.Gr.add_edge('r_' + str(j), 'r_' + str(i), dist=dst) # add b->a
degrees = np.bincount(self.re)
self.min_ref_degree = 2 * np.min(degrees[degrees > 0])
del degrees, self.r_edges
gc.collect()
self.connect_isolated_nodes()
def connect_isolated_nodes(self):
query_degrees = [deg for (node, deg) in self.Gq.degree() if
deg != 0] # get the degree of nodes in the reference graph
min_query_degree = int(np.min(query_degrees))
isolated_nodes = [int(i[2:]) for i in list(nx.isolates(self.Gq))]
for k in isolated_nodes:
row_values = [(k, j, -self.query_intra_corr[k, j]) for j in range(k+1,len(self.query_intra_corr))]
col_values = [(k, i, -self.query_intra_corr[i, k]) for i in range(k)]
edges = sorted(row_values + col_values, key=lambda x: x[2])[:min_query_degree]
for edge in edges:
dst = ((self.query_intra_dist[edge[0], edge[1]] - self.q_min_dist) /
(self.q_max_dist - self.q_min_dist))
self.Gq.add_edge('q_' + str(edge[0]), 'q_' + str(edge[1]), dist=dst)
del self.query_intra_corr
gc.collect()
isolated_nodes = list(nx.isolates(self.Gr)).copy() # list all isolated nodes
self.re = np.unique(self.re)
isolated_nodes = [int(i[2:]) for i in list(nx.isolates(self.Gr))
if int(i[2:]) not in self.re
and int(i[2:]) in self.matched_ref
]
for k in isolated_nodes:
row_values = [(k, j, -self.ref_intra_corr[k, j]) for j in range(k+1, len(self.ref_intra_corr))]
col_values = [(k, i, -self.ref_intra_corr[i, k]) for i in range(k)]
edges = sorted(row_values + col_values, key=lambda x: x[2])[:self.min_ref_degree]
for edge in edges:
dst = ((self.ref_intra_dist[edge[0], edge[1]] - self.r_min_dist) /
(self.r_max_dist - self.r_min_dist))
self.Gr.add_edge('r_' + str(edge[0]), 'r_' + str(edge[1]), dist=dst)
del self.ref_intra_corr
gc.collect()
def anchors_selection(self):
print("\tAnchors Selection")
pandas2ri.activate()
robjects.globalenv['data'] = robjects.conversion.py2rpy(pd.concat([self.D_q,
self.D_r]))
robjects.globalenv['batches'] = robjects.conversion.py2rpy(pd.DataFrame(
np.concatenate([self.adata[self.D_q.index].obs[[self.batch_key]],
self.adata[self.D_r.index].obs[[self.batch_key]]]))[0])
r_output = robjects.r(
'''
library ("Seurat")
options(future.globals.maxSize = 10000 * 1024^2)
seurat_obj <- CreateSeuratObject(t(data))
seurat_obj <- FindVariableFeatures(seurat_obj, selection.method = "vst", verbose = F,nfeatures = 2000)
seurat_obj$Batch <- batches
data.list <- SplitObject(seurat_obj, split.by = "Batch") #split by batch
#get anchors
anchors_dataframe <- FindIntegrationAnchors(object.list = data.list,dims = 1:30, verbose = F )
anchors_dataframe=anchors_dataframe@anchors
output=list(anchors_dataframe)
'''
)
del robjects.globalenv['data']
del robjects.globalenv['batches']
gc.collect()
anchors_dataframe = r_output[0] # Seurat anchors
anchors_dataframe = anchors_dataframe.astype({'cell1': int,
'cell2': int})
anchors_dataframe = anchors_dataframe[anchors_dataframe["dataset1"] == 1]
anchors_dataframe = anchors_dataframe[anchors_dataframe.score > 0.0]
anchors_dataframe["dists"] = 0.
anchors_dataframe["cell1"] -= 1
anchors_dataframe["cell2"] -= 1
for i in anchors_dataframe.index:
anchors_dataframe["dists"][i] = self.inter_dists[
int(anchors_dataframe["cell1"][i]),
int(anchors_dataframe["cell2"][i])]
anchors_dataframe.sort_values("dists", inplace = True)
self.anchors_ = anchors_dataframe.copy()
self.query_ref_matchings = {}
self.matched_ref = set()
for i in np.unique(self.anchors_.cell1):
self.query_ref_matchings[i] = int(self.anchors_[self.anchors_.cell1 == i].values[0][1])
self.matched_ref.add(self.query_ref_matchings[i])
def integrate_datasets(self):
print("\tIntegration...")
self.min_inter = np.min(self.inter_dists)
self.max_inter = np.max(self.inter_dists)
self.int_vectors = []
self.alphas = {}
self.alphas_na = {}
self.q_neighbors_wa = {}
self.q_neighbors_woa = {}
self.q_neighbors_dists_wa = {}
self.q_neighbors_dists_woa = {}
self.q_a_dists = {}
self.a_a_dists = {}
self.k_neighbors = max(20, min(30, min(list(Counter(self.qkm.labels_).values())) - 1))
for i in range(self.D_q.shape[0]):
self.q_neighbors_wa[i], self.q_neighbors_dists_wa[i], self.a_a_dists[i], \
self.q_a_dists[i], self.q_neighbors_woa[i], self.q_neighbors_dists_woa[
i] = self.initializations("q_" + str(i))
del self.Gq, self.Gr
gc.collect()
for i in range(self.D_q.shape[0]):
self.build_int_vectors(i)
self.prev_int_vectors = np.array(self.int_vectors)
self.curr_int_vectors = np.zeros_like(self.prev_int_vectors)
self.diff = [1000, np.sum(self.curr_int_vectors)]
self.iteration = 0
while abs(self.diff[-2] - self.diff[-1]) / (
abs(self.diff[-1]) + 0.00001) > 0.00001 and self.iteration < self.max_iterations:
self.iteration += 1
for i in range(self.D_q.shape[0]):
if i in self.query_ref_matchings:
self.curr_int_vectors[i] = self.int_vectors[i]
continue
self.curr_int_vectors[i] = self.update_int_vectors(i, self.iteration)
self.diff.append(np.sum(self.curr_int_vectors))
self.prev_int_vectors = np.copy(self.curr_int_vectors)
self.correct_query_dataset()
def initializations(self, qi):
def edge_weight(node):
return node[1]
qi_neighbors = set()
for n_j in self.Gq.neighbors(qi):
qi_neighbors.add((n_j, self.Gq.edges[qi, n_j]['dist']))
qi_neighbors = sorted(qi_neighbors, key=edge_weight)[:self.k_neighbors]
qi_neighbors_wa = []
qi_neighbors_woa = []
qi_neighbors_dists_wa = []
qi_neighbors_dists_woa = []
qi_a_distances = []
ai_aj_neighbors = []
if int(qi[2:]) in self.query_ref_matchings:
anchor_of_qi = 'r_' + str(self.query_ref_matchings[int(qi[2:])])
qi_neighbors_wa.append(int(qi[2:]))
qi_neighbors_dists_wa.append(0)
ai_aj_neighbors.append(0)
qi_a_distances.append({self.query_ref_matchings[int(qi[2:])]: (self.inter_dists[int(qi[2:]),
self.query_ref_matchings[int(qi[2:])]] - self.min_inter) / ( self.max_inter - self.min_inter)})
else:
anchor_of_qi = None
for i in range(len(qi_neighbors)):
qp = qi_neighbors[i][0]
if int(qp[2:]) in self.query_ref_matchings:
qi_neighbors_wa.append(int(qp[2:]))
qi_neighbors_dists_wa.append(qi_neighbors[i][1])
anchor_of_qp = 'r_' + str(self.query_ref_matchings[int(qp[2:])])
if anchor_of_qi == anchor_of_qp:
ai_aj_neighbors.append(0)
elif (anchor_of_qi, anchor_of_qp) in self.Gr.edges():
ai_aj_neighbors.append(self.Gr.edges[anchor_of_qi, anchor_of_qp]['dist'])
else:
ai_aj_neighbors.append(1.)
qi_a_distances.append({self.query_ref_matchings[int(qp[2:])]: (self.inter_dists[int(qp[2:]), self.query_ref_matchings[int(qp[2:])]] - self.min_inter) / ( self.max_inter - self.min_inter)})
else:
qi_neighbors_woa.append(int(qp[2:]))
qi_neighbors_dists_woa.append(qi_neighbors[i][1])
return qi_neighbors_wa, qi_neighbors_dists_wa, ai_aj_neighbors, qi_a_distances, qi_neighbors_woa, qi_neighbors_dists_woa
def get_alphas(self, qi):
dists = list((np.array(self.q_neighbors_dists_wa[qi]) + np.array(self.a_a_dists[qi])) / 2)
dists_na = list(np.array(self.q_neighbors_dists_woa[qi]))
ai_aj_dists = self.q_a_dists[qi]
alphas = []
alphas_na = []
for i in range(len(dists)):
v = self.beta * math.exp(-dists[i]) + (1 - self.beta) * math.exp(- list(ai_aj_dists[i].values())[0])
alphas.append(v)
for i in range(len(dists_na)):
v = self.beta * math.exp(-dists_na[i])
alphas_na.append(v)
sum_alphas = np.sum(alphas) + np.sum(alphas_na)
alphas = [[x / sum_alphas] for x in alphas]
alphas_na = [[x / sum_alphas] for x in alphas_na]
return alphas, alphas_na
def build_int_vectors(self, qi):
self.alphas[qi], self.alphas_na[qi] = self.get_alphas(qi)
int_vector = np.zeros(self.D_q.shape[1])
for v, w in zip(self.alphas[qi], self.q_neighbors_wa[qi]):
int_vector += v[0] * (np.array(self.D_r.loc[self.D_r.index[self.query_ref_matchings[w]]]) -
np.array(self.D_q.loc[self.D_q.index[w]]))
self.int_vectors.append(int_vector)
def update_int_vectors(self, qi, iteration):
int_vector = np.zeros(self.D_q.shape[1])
for v, w in zip(self.alphas[qi], self.q_neighbors_wa[qi]):
int_vector += v[0] * (self.prev_int_vectors[w])
if iteration != 1:
for v, w in zip(self.alphas_na[qi], self.q_neighbors_woa[qi]):
int_vector += v[0] * (self.prev_int_vectors[w])
return int_vector
def correct_query_dataset(self):
self.D_q += np.array(self.curr_int_vectors)