-
Notifications
You must be signed in to change notification settings - Fork 565
/
Copy pathautoencoder_MNIST.py
58 lines (42 loc) · 1.88 KB
/
autoencoder_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pylab as plt
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, Model
from keras.layers import Dense
from keras.optimizers import Adam
from keras.datasets import mnist
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 25})
from sklearn.datasets import fetch_mldata
import matplotlib.pyplot as plt
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784) / 255.0
x_test = x_test.reshape(10000, 784) / 255.0
m = Sequential()
m.add(Dense(512, activation='elu', input_shape=(784,)))
m.add(Dense(128, activation='elu'))
m.add(Dense(2, activation='linear', name="bottleneck"))
m.add(Dense(128, activation='elu'))
m.add(Dense(512, activation='elu'))
m.add(Dense(784, activation='sigmoid'))
m.compile(loss='mean_squared_error', optimizer = Adam())
history = m.fit(x_train, x_train, batch_size=128, epochs=5, verbose=1,
validation_data=(x_test, x_test))
encoder = Model(m.input, m.get_layer('bottleneck').output)
embedding = encoder.predict(x_train) # bottleneck representation
plt.figure()
plt.scatter(embedding[:,0], embedding[:,1], c=y_train, s=0.1, cmap='Spectral')
plt.gca().get_xaxis().set_ticklabels([])
plt.gca().get_yaxis().set_ticklabels([])
ax = plt.gca()
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/autoencoder-MNIST.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/autoencoder-MNIST.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/autoencoder-MNIST.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
plt.show()